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C0 Interior Penalty Discontinuous Galerkin
approximation of a sixth order Cahn-Hilliard
equation modeling microemulsification processes

Ronald H.W. Hoppe and Christopher Linsenmann

Abstract Microemulsions can be modeled by an initial-boundary valueproblem for
a sixth order Cahn-Hilliard equation. Introducing the chemical potential as a dual
variable, a Ciarlet-Raviart type mixed formulation yieldsa system consisting of a
linear second order evolutionary equation and a nonlinear fourth order equation.
The spatial discretization is done by a C0 Interior Penalty Discontinuous Galerkin
(C0IPDG) approximation with respect to a geometrically conforming simplicial tri-
angulation of the computational domain. The DG trial spacesare constructed by C0

conforming Lagrangian finite elements of polynomial degreep≥ 2. For the semidis-
cretized problem we derive quasi-optimal a priori error estimates for the global dis-
cretization error in a mesh-dependent C0IPDG norm. The semidiscretized problem
represents an index 1 Differential Algebraic Equation (DAE) which is further dis-
cretized in time by an s-stage Diagonally Implicit Runge-Kutta (DIRK) method of
orderq≥ 2. Numerical results show the formation of microemulsions in an oil/water
system and confirm the theoretically derived convergence rates.

1 Introduction

Microemulsions are thermodynamically stable colloidal dispersions of an oil/water
system that typically occur as oil-in-water, water-in-oil, or water/oil droplets with a
diameter up to 200 nm. They are thus considerably smaller than ordinary emulsions
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(macroemulsions). Moreover, in contrast to macroemulsions whose generation re-
quires strong shear forces, microemulsions can be created by simple mixing. Due
to their efficient drug solubilization capacity and bioavailability, microemulsions
have significant applications in pharmacology as drug carriers for the delivery of
hydrophilic as well as lipophilic drugs. Other applications include cleaning and pol-
ishing processes, food processing, and cutting oils (cf. [14, 21, 23, 24, 27, 28]).
As far as the mathematical modeling is concerned, for ternary oil-water-microemul-
sions Gompper et al. [15, 16, 17, 18] have considered a secondorder Ginzburg-
Landau free energy so that the dynamics of the microemulsification process can
be described by an initial-boundary value problem for a sixth order Cahn-Hilliard
equation. The existence and uniqueness of strong and weak solutions has been in-
vestigated analytically by Pawlow et al. [25, 26, 29].
For the numerical simulation of the microemulsification process, we introduce the
chemical potential as a dual variable and consider a Ciarlet-Raviart type mixed for-
mulation as a system consisting of a linear second order evolutionary equation and
a nonlinear fourth order elliptic equation. The spatial discretization is taken care
of by a C0 Interior Penalty Discontinuous Galerkin (C0IPDG) approximation with
respect to a geometrically conforming simplicial triangulation of the computational
domain. The DG trial spaces are constructed by C0 conforming Lagrangian finite
elements of polynomial degreep ≥ 2. We note that IPDG methods for the stan-
dard fourth order Cahn-Hilliard equation have been studiedin [32] based on IPDG
approximations of fourth order problems including the biharmonic equation consid-
ered in [5, 10] (cf. also [3, 11, 12, 13]). The semidiscretized problem represents an
initial value problem for an index 1 Differential AlgebraicEquation (DAE) which is
discretized in time by an s-stage Diagonally Implicit Runge-Kutta method of order
q ≥ 2 with respect to a partitioning of the time interval (cf., e.g., [1, 7, 19]). The
resulting parameter dependent nonlinear algebraic systemis numerically solved by
a predictor-corrector continuation strategy with the timestep size as the continua-
tion parameter featuring constant continuation as a predictor and Newton’s method
as corrector.
The paper is organized as follows: After some notations and preliminaries in sec-
tion 2, in section 3 we present the initial-boundary value problem for the sixth order
Cahn-Hilliard equation based on a Ginzburg-Landau free energy and introduce a
Ciarlet-Raviart type mixed formulation as a system consisting of a linear second or-
der evolutionary equation and a nonlinear fourth order elliptic equation. Then, sec-
tion 4 is devoted to the semidiscretization in space by the C0IPDG method. Quasi-
optimal a priori error estimates for the global discretization error both in the primal
and in the dual variable are derived in section 5. In section 6, very briefly we discuss
the discretization in time by an s-stage DIRK method of orderq and the numeri-
cal solution of the resulting parameter dependent nonlinear algebraic system by a
predictor-corrector continuation strategy. In the final section 7, we present numer-
ical results which show the formation of water-in-oil and oil-in-water droplets in
a ternary water-oil-microemulsion system and confirm to some extent the theoreti-
cally derived convergence rates.
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2 Notations and preliminaries

We use standard nontation from Lebesgue and Sobolev space theory (cf., e.g., [30]).
In particular, for a bounded domainΩ ⊂ Rd,d ∈ N, we refer toLp(Ω),1≤ p< ∞,
as the Banach space of p-th power Lebesgue integrable functions onΩ with norm‖·
‖0,p,Ω and toL∞(Ω) as the Banach space of essentially bounded functions onΩ with
norm‖ ·‖0,∞,Ω . For functionsvi ∈ Lpi (Ω),1≤ i ≤ 3, wherepi ∈R+,∑3

i=11/pi = 1,
the generalized Hölder inequality

∫

Ω

3

∏
i=1

|vi | dx≤
3

∏
i=1

‖vi‖0,pi ,Ω . (1)

holds true. Further, we denote byWs,p(Ω),s∈ R+,1≤ p≤ ∞, the Sobolev spaces
with norms‖·‖s,p,Ω . We note that forp= 2 the spacesL2(Ω) andWs,2(Ω) =Hs(Ω)
are Hilbert spaces with inner products(·, ·)0,2,Ω and(·, ·)s,2,Ω . In the sequel, we will
suppress the subindex 2 and write(·, ·)0,Ω ,(·, ·)s,Ω and‖ · ‖0,Ω ,‖ · ‖s,Ω instead of
(·, ·)0,2,Ω ,(·, ·)s,2,Ω and‖ · ‖0,2,Ω ,‖ · ‖s,2,Ω .
For T > 0 and a Banach spaceV with norm‖ · ‖V the spaceLp((0,T),V),1≤ p≤
∞, refers to the Banach space of all functionsv such thatv(t) ∈ V for almost all
t ∈ (0,T) with norm

‖v‖Lp((0,T),V) :=





(
T∫
0
‖v(t)‖p

V dt)1/p , 1≤ p< ∞

ess sup
t∈(0,T)

‖v(t)‖V , p= ∞
.

The spacesWs,p((0,T),V),s∈ R+,1 ≤ p ≤ ∞, are defined analogously. Finally,
C([0,T],V) denotes the Banach space of functionsv such thatv(t) ∈ V for all t ∈
[0,T] with norm

‖v‖C([0,T],V) := max
t∈[0,T ]

‖v(t)‖V .

3 The sixth order Cahn-Hilliard equation

Given a bounded domainΩ ⊂ R2 with boundaryΓ = ∂Ω and exterior unit normal
vector nΓ , denoting byT > 0 the final time, and settingQ := Ω × (0,T), Σ =
Γ × (0,T), we consider the following sixth order Cahn-Hilliard equation

σ
∂c
∂ t

−M∆
(

κ∆2c−a(c)∆c− 1
2

a′(c)|∇c|2+ f0(c)
)
= 0 in Q, (2a)

with the boundary conditions
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nΓ ·∇c= nΓ ·∇µ(c) = nΓ ·∇∆c= 0 onΣ , (2b)

and the initial condition

c(·,0) = c0 in Ω . (2c)

Here,σ is a surface energy density,M stands for the mobility which in the sequel
will be assumed to be a positive constant,κ is a positive constant as well, and the
coefficient functiona(c) is assumed to be of the form

a(c) = a0+a2c2, a0 ∈R, a2 > 0. (3)

The function f0(c) = δF0(c)/δc is the variational derivative of the multiwell free
energy

F0(c) =
∫

Ω

β
2
(c+1)2(c2+h0)(c−1)2, h0 ∈ R,

whereβ is another surface energy density andh0 ∈ R measures the deviation from
the oil-water-microemulsion coexistence. Moreover,µ(c) denotes the chemical po-
tential which is the variational derivative

µ(c) =
δF(c)

δc

of the total free energy

F(c) = F0(c)+
∫

Ω

(1
2

a(c)|∇c|2+ 1
2

κ |∆c|2
)

dx, (4)

andc0 is a given initial condition.

Remark 1 The initial-boundary value problem(2a)-(2c)describes the dynamics of
ternary oil-water-microemulsion systems where the solution c is an order parameter
representing the local difference between the oil and waterconcentrations. We note
that the Ginzburg-Landau free energy(4) for such systems has been suggested in
[16, 17]and [15, 18].
For bounded convex domains with boundaryΓ of class C6 and initial data c0 such
that c0 ∈ H5(Ω) with spatial mean

cm :=
1
|Ω |

∫

Ω

c0 dx

satisfying the compatibility conditions

nΓ ·∇c0 = nΓ ·∇∆c0 = 0 onΓ , (5)
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it has been shown in[25] that the initial-boundary value problem for the sixth order
Cahn-Hilliard equation(2a)-(2c)has a unique solution global in time such that

c∈ L2((0,T),H6(Ω))∩H1((0,T),H4(Ω)),

c(·,0) = c0,
1
|Ω |

∫

Ω

c(t) dx= cm for all t ∈R+.

Introducing the chemical potentialµ(c) as an additional unknownw := µ(c), the
sixth order Cahn-Hilliard equation (2a) can be equivalently formulated as a system
of a linear second order evolutionary equation and a nonlinear fourth order elliptic
equation in(c,w) according to

σ
∂c
∂ t

−M∆w= 0 in Q, (6a)

κ∆2c−a(c)∆c−a2c|∇c|2+ f0(c)−w= 0 in Q, (6b)

with the boundary conditions

nΓ ·∇c= nΓ ·∇w= nΓ ·∇∆c= 0 onΣ , (6c)

and the initial condition

c(·,0) = c0 in Ω . (6d)

We set

V := H1(Ω), Z := {z∈ H2(Ω) | nΓ ·∇z= 0 onΓ }. (7)

Observing

∇ · (a(c)∇c) = a(c)∆c+2a2|∇c|2,

we define

(g(c),v)0,Ω :=−(a(c)∆c,v)0,Ω − (a2c |∇c|2,v)0,Ω +( f0(c),v)0,Ω , v∈ Z. (8)

A pair (c,w) is said to be a weak solution of (6a)-(6d), if for allv∈V andz∈ Z it
holds

σ 〈∂c
∂ t

,v〉V∗,V +M (∇w,∇v)0,Ω = 0, (9a)

κ (∆c,∆z)0,Ω +(g(c),z)0,Ω − (w,z)0,Ω = 0, (9b)

and if the initial condition

c(·,0) = c0. (9c)
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is satisfied.

Remark 2 The existence and uniqueness of a weak solution satisfying

c∈ H1((0,T),V∗)∩L∞((0,T),Z)∩L2((0,T),H3(Ω)), (10)

w∈ L2((0,T),V)

has been shown in[29].

4 C0 Interior Penalty Discontinuous Galerkin approximation

For semidiscretization in space of the coupled system (6a)-(6d) we will use the
C0IPDG method with respect to a simplicial triangulation of the computational do-
main. Due to the convexity of the computational domain, we can use the Ciarlet-
Raviart mixed formulation of (6b) by introducingz= ∆c as an additional unknown
so that (6b) can be written as the following system of two second order equations

z= ∆c, (11a)

κ∆z−a(c)∆c−a2c|∇c|2+ f0(c) = w. (11b)

Multiplying (11a) by a test functionϕ ∈ H1(Ω) and (11b) by a test functionψ ∈
H2(Ω) and integrating overΩ , integration by parts and observing (6c),(8) yields
the weak formulation

(z,ϕ)0,Ω =−(∇c,∇ϕ)0,Ω , (12a)

(κz,∆ψ)0,Ω − (κz,n ·∇ψ)0,Γ +(g(c),ψ)0,Ω = (w,ψ)0,Ω . (12b)

We assumeTh(Ω) to be a shape-regular simplicial triangulation ofΩ . ForD ⊆ Ω ,
we denote byEh(D) the sets of nodal points ofTh in D. For K ∈ Th(Ω) andE ∈
Eh(Ω̄ ) we further refer tohK andhE as the diameter ofK and the length ofE. We
seth := max{hK | K ∈ Th(Ω). For two quantitiesA,B ∈ R+ we use the notation
A. B, if there exists a constantC> 0, independent ofh, such thatA≤CB.
Denoting byPp(K), p∈ N, the linear space of polynomials of degree≤ p onK, for
p≥ 2 we set

Q(p)
h := {vh ∈ L2(Ω) | vh|K ∈ Pp(T), K ∈ Th} (13)

and refer to

V(p)
h := Q(p)

h ∩H1(Ω) (14)

as the finite element space of Lagrangian finite elements of type p (cf., e.g., [4, 8]).

We refer toNh(Ω) as the set of nodal points such that anyvh ∈V(p)
h is uniquely de-
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termined by its degrees of freedomvh(a),a∈Nh(Ω) and toIh : Hs(Ω)→V(p)
h ,s≥

2, as the nodal interpolation operator.
In the sequel, we will use the inverse inequalities [31]

‖∇vh‖0,K ≤ C(1)
Inv

p2 h−1 ‖vh‖0,K, vh ∈V(p)
h , (15a)

‖∆vh‖0,K ≤ C(2)
Inv

(p−1)2 h−1 ‖∇vh‖0,K , vh ∈V(p)
h , (15b)

and the trace inequality [31]

‖vh‖0,∂K ≤ CTr p h−1/2 ‖vh‖0,K , vh ∈V(p)
h . (15c)

We note thatV(p)
h 6⊂H2(Ω) and hence,V(p)

h is a nonconforming finite element space
for the approximation of the fourth order equation (6b). In particular, for a function
zh onΩ that is elementwise polynomial, we define averages and jumpsaccording to

{zh}E :=

{
1
2

(
zh|E∩T+ + zh|E∩T−

)
, E ∈ Eh(Ω),

zh|E , E ∈ Eh(Γ ),
(16a)

[zh]E :=

{
zh|E∩T+ − zh|E∩T− , E ∈ Eh(Ω),

zh|E , E ∈ Eh(Γ ),
. (16b)

The general C0DG approximation of (12a),(12b) reads: Givenwh ∈ V(p)
h , find

(ch,zh) ∈V(p)
h ×Q(p)

h such that for all(ϕh,vh) ∈ Q(p)
h ×V(p)

h it holds

∑
K∈Th(Ω)

(
(zh,ϕh)0,K +(∇ch,∇ϕh)0,K

)
− ∑

E∈Eh(Ω̄)

(nE · ĉE,ϕh)0,∂K

)
= 0, (17a)

∑
K∈Th(Ω)

(
(κzh,∆vh)0,T +(g(ch),vh)0,K

)
− ∑

E∈Eh(Ω̄)

(ẑE,∇vh)0,E − (wh,vh)0,K

)
= 0,

(17b)

whereĉE andẑE are suitably chosen numerical flux functions that determinethe type
of C0DG approximation. In particular, for the C0IPDG approximation we choose

ĉE :=

{
{∇ch}E , E ∈ Eh(Ω)

0 , E ∈ Eh(Γ )
, (17c)

ẑE :=
(
{∆ch}E − α

hE
[
∂ch

∂n
]E

)
nE, E ∈ Eh(Ω̄), (17d)

whereα > 0 is a penalization parameter. The choice (17c),(17d) has the advantage
that for ϕh = κ∆vh in (17a) we may eliminate the dual variablezh from the sys-
tem and thus arrive at the following primal variational formulation of the C0IPDG

approximation: Findch ∈V(p)
h such that for allvh ∈V(p)

h it holds
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aDG
h (ch,vh)+ ∑

K∈Th(Ω)

(g(ch),vh)0,K = (wh,vh)0,Ω , (18)

whereaDG
h (·, ·) : V(p)

h ×V(p)
h → R stands for the C0IPDG bilinear form

aDG
h (ch,vh) := ∑

K∈Th(Ω)

(κ∆ch,∆vh)0,K − ∑
E∈Eh(Ω)

(
(κnE · {∇ch}E, [∆vh]E)0,E (19)

+(κ [∆ch]E,nE · {∇vh}E)0,E

)
+ ∑

E∈Eh(Ω)

α
hE

(nE · [∇ch]E,nE · [∇vh]E)0,E.

We note that the C0IPDG bilinear form is not well-defined for functionsc∈ Z, since
∆c|E,E ∈ Eh(Ω̄ , does not live inL2(E). This can be cured by means of a lifting
operator

L : V(p)
h +Z →V(p)

h

which is defined according to
∫

Ω

L(c) vh dx=− ∑
E∈Eh(Ω̄)

∫

E

nE · [∇c]E vh ds.

We define an extension ˜aDG
h (·, ·) : (V(p)

h +Z)× (V(p)
h +Z)→ R as follows:

ãDG
h (c,v) := ∑

K∈Th(Ω)

∫

K

(
∆c ∆v+L(c) ∆v+∆c L(v)

)
dx+ (20)

∑
E∈Eh(Ω̄)

α
hE

nE · [∇c]E nE · [∇v]E ds.

OnV(p)
h +Z we introduce the mesh-dependent IPDG semi-norm

|c|2,h,Ω :=
(

∑
K∈Th(Ω)

‖∆c‖2
0,K + ∑

E∈Eh(Ω̄)

α
hE

‖nE · [∇c]E‖2
0,E

)1/2
(21)

and the mesh-dependent IPDG norm

‖c‖2,h,Ω :=
(
|c|22,h,Ω + ‖c‖2

0,Ω

)1/2
. (22)

From the Poincaré-Friedrichs inequality for piecewise H2 functions (cf., e.g., [6])
we deduce that there exists a constantCPF > 0 such that

‖∇v‖2
0,Ω ≤CPF |v|22,h,Ω , v∈V(p)

h +Z. (23)
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It is not difficult to show that for sufficiently large penaltyparameterα there exist
constantsγ > 0 andβ > 0 such that the C0IPDG bilinear form ˜aDG

h satisfies the
Gårding-type inequality

ãDG
h (c,c)≥ γ ‖c‖2

2,h,Ω −β ‖c‖2
0,Ω , c∈V(p)

h +Z. (24)

Moreover, there exists a constantΓ > 0 such that

|ãDG
h (c,v)| ≤ Γ ‖c‖2,h,Ω ‖v‖2,h,Ω , c,v∈V(p)

h +Z. (25)

The C0IPDG method for the nonlinear fourth order elliptic equation has the advan-
tage that we may approximate the dual variablew in the linear second order evolu-

tionary equation by a function inV(p)
h as well. Hence, the C0IPDG approximation of

the initial-boundary value problem (6a)-(6d) for the sixthorder Cahn-Hilliard equa-
tion reads:
Find(ch,wh)∈H1((0,T),V(p)

h )×L2((0,T),V(p)
h ) such that for allvh ∈V(p)

h it holds

(σ
∂ch

∂ t
,vh)0,Ω −M (∇wh,∇vh)0,Ω = 0, (26a)

aDG
h (ch,vh)+ ∑

K∈Th(Ω)

(g(ch),vh)0,K − (wh,vh)0,Ω = 0, (26b)

ch(·,0) = Ihc0. (26c)

Remark 3 (i) The unique solvability of(26a)-(26c)can be shown by similar argu-
ments as in[29].
(ii) The C0IPDG approximation(26a)-(26c)is consistent with the weak formulation
(9a)-(9c) of the initial-boundary value problem(6a)-(6d) in the sense that for all

vh ∈V(p)
h it holds (cf., e.g.,[5])

〈σ ∂c
∂ t

,vh〉V,V∗ −M (∇w,∇vh)0,Ω = 0, (27a)

ãDG
h (c,vh)+ ∑

K∈Th(Ω)

(g(c),vh)0,K − (w,vh)0,Ω = 0. (27b)

5 Quasi-optimal a priori error estimates

We suppose that for somer ≥ 5 the domainΩ has a boundaryΓ of classCr+1, the
initial data satisfyc0 ∈ Hr(Ω) as well as the compatibility condition (5) and that the
unique solution(c,w) of (9a)-(9c) satisfies the regularity assumptions
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c∈ L2((0,T),Hr+1(Ω))∩H1((0,T),Hr−1(Ω))∩H2((0,T),Hr−3(Ω)), (28a)

w∈ L2((0,T),Hr−1(Ω))∩H1((0,T),Hr−3(Ω))∩H2((0,T),Hr−5(Ω)). (28b)

Remark 4 It follows from(28a),(28b)that the pair(c,w) satisfies

c∈C([0,T],Hr(Ω))∩C1([0,T],Hr−2(Ω)), (29a)

w∈C([0,T],Hr−2(Ω))∩C1([0,T],Hr−4(Ω)). (29b)

The regularity assumptions (28a),(28b) imply the following interpolation estimates
(cf., e.g., [4, 8])

t∫

0

‖c− Ihc‖2
m,Ω dτ . h2(min(p+1,r+1)−m)

t∫

0

|c|2min(p+1,r+1),Ω ds, (30a)

t∫

0

‖∂c
∂s

− Ih
∂c
∂s

‖2
0,Ω ds. h2min(p+1,r−1)

t∫

0

|∂c
∂s

|2min(p+1,r−1),Ω ds, (30b)

‖(c− Ihc)(·, t)‖2
m,Ω . h2(min(p+1,r)−m) |c(·, t)|2min(p+1,r),Ω , (30c)

t∫

0

‖w− Ihw‖2
m,Ω ds. h2(min(p+1,r−1)−m)

t∫

0

|w|2min(p+1,r−1),Ω ds, (30d)

t∫

0

‖∂w
∂s

− Ih
∂w
∂s

‖2
0,Ω ds. h2min(p+1,r−3)

t∫

0

|∂w
∂s

|2min(p+1,r−3),Ω ds, (30e)

‖(w− Ihw)(·, t)‖2
m,Ω . h2(min(p+1,r−2)−m) |w(·, t)|2min(p+1,r−2),Ω . (30f)

For the interpolation error in the mesh-dependent IPDG-norm it follows from (30)
that

t∫

0

‖c− Ihc‖2
2,h,Ω dτ . h2(min(p+1,r+1)−2)

t∫

0

|c|2min(p+1,r+1),Ω dτ, (31a)

‖(c− Ihc)(·, t)‖2
2,h,Ω . h2(min(p+1,r)−2) |c(·, t)|2min(p+1,r),Ω , . (31b)

Theorem 5.Let (c,w) and (ch,wh) be the solutions of(9a)-(9c) and (26a)-(26c).
Under the regularity assumptions(28a),(28b), and (29a),(29b) there exists a con-
stant C> 0, independent of h, such that for all0< t ≤ T it holds
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‖(c− ch)(·, t)‖2
2,h,Ω +

t∫

0

‖c− ch‖2
2,h,Ω ds+

t∫

0

‖∇(w−wh)‖2
0,Ω ds . (32)

h2(pr+1−2)

t∫

0

|c|2pr+1,Ω ds+h2(pr−1−2)

t∫

0

|∂c
∂s

|2pr−1,Ω ds+

h2(pr−1−1)

t∫

0

|w|2pr−1,Ω ds+h2pr−3

t∫

0

|∂w
∂s

|2min(p+1,r−3),Ω ds+

h2(pr−2) |c0|2min(p+1,r),Ω +h2pr−2 |w0|2pr−2,Ω ,

where pℓ := min(p+1, ℓ).

The proof of Theorem 5 will be given by a series of lemmas and propositions.

First of all, recalling that ˜aDG
h (·, ·) satisfies the Gårding-type inequality (24), we

perform a scaling of the primal variablec and the dual variablew according to

c(x, t) := exp(τt) ĉ(x, t), w(x, t) := exp(τt) ŵ(x, t), τ > 0. (33)

In the new variables(ĉ, ŵ), the system (6a)-(6d) reads

σ
∂ ĉ
∂ t

+στ ĉ−M∆ ŵ= 0 in Q, (34a)

κ∆2ĉ+ ĝ(ĉ)− ŵ= 0 in Q, (34b)

with the boundary conditions

n ·∇ĉ= n ·∇ŵ= n ·∇∆ ĉ= 0 onΣ , (34c)

and the initial condition

ĉ(·,0) = c0 in Ω , (34d)

where

ĝ(ĉ) := − â(ĉ) ∆ ĉ−a2 exp(2τt) ĉ |∇ĉ|2+ f̂0(ĉ), (34e)

â(ĉ) := a0+a2exp(2τt) ĉ2, (34f)

f̂0(ĉ) := β (exp(τt) ĉ+1)(exp(τt) ĉ−1)(exp(2τt) ĉ3− (1−2h0) ĉ). (34g)

A pair (c,w) is said to be a weak solution of (6a)-(6d), if for allv∈ Z it holds

σ 〈∂ ĉ
∂ t

,v〉V∗,V +στ (ĉ,v)0,Ω +M (∇ŵ,∇v)0,Ω = 0, (35a)

κ (∆ ĉ,∆v)0,Ω +(ĝ(ĉ),v)0,Ω − (ŵ,v)0,Ω = 0, (35b)
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and if the initial condition

ĉ(·,0) = c0. (35c)

is satisfied. The semidiscrete variables(ch,wh) are scaled in the same way and

hence, the semidiscrete approximation requires the computation of(ĉh, ŵh)∈V(p)
h ×

V(p)
h such that for allvh ∈V(p)

h it holds

(σ
∂ ĉh

∂ t
,vh)0,Ω +στ (ĉh,vh)0,Ω −M (∇ŵh,∇vh)0,Ω = 0, (36a)

aDG
h (ĉh,vh)+ ∑

K∈Th(Ω)

(ĝ(ĉh),vh)0,K − (ŵh,vh)0,Ω = 0, (36b)

ĉh(·,0) = ch,0. (36c)

Remark 6 If the regularity assumptions(28a),(28b)hold true for(c,w), they also
apply to(ĉ, ŵ) and the interpolation estimates(30)are satisfied for(ĉ, ŵ) as well.

We will prove Theorem 5 based on an implicit time discretization of (34a)-(34d) and
(36a)-(36c) by the backward Euler scheme with respect to an equidistant partition
{tm=m∆ t,0≤m≤M},M ∈N, of the time interval[0,T] with step size∆ t =T/M.
Denoting by(ĉm, ŵm) and (ĉm

h , ŵ
m
h ) approximations of(ĉ, ŵ) and (ĉh, ŵh) at time

tm,0 ≤ m≤ M, with ĉ0 = ĉ0 and ĉ0
h = ch,0, the backward Euler scheme for (34a)-

(34d) reads:
Find (ĉm, ŵm) such that for allv∈ Z it holds

σ (ĉm,v)0,Ω +στ∆ t (ĉm,v)0,Ω +∆ t (∇ŵm,∇v)0,Ω −σ (ĉm−1,v)0,Ω = 0, (37a)

aDG
h (ĉm,v)+ (ĝ(ĉm,v)0,Ω − (ŵm,v)0,Ω = 0. (37b)

The unique solvability of (37a),(37b) follows in the same way as that of (9a)-(9c).
Likewise, the backward Euler scheme for (36a)-(36c) is given by:

Find (ĉm
h , ŵ

m
h ) such that for allvh ∈V(p)

h it holds

σ (ĉm
h − ĉm−1

h ,vh)0,Ω +στ∆ t (ĉm
h ,vh)0,Ω +∆ t (∇ŵm

h ,∇vh)0,Ω = 0, (38a)

aDG
h (ĉm

h ,vh)+ ∑
K∈Th(Ω)

(ĝ(ĉm
h ,vh)0,K − (ŵm

h ,vh)0,Ω = 0. (38b)

Again, the unique solvability of (38a),(38b) follows in thesame way as that of (26a)-
(26c).

Remark 7 (i) The C0IPDG approximation(38a),(38b)is consistent with(37a),(37b)

in the sense that for all vh ∈V(p)
h it holds
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σ (ĉm− ĉm−1,vh)0,Ω +στ∆ t (ĉm,vh)0,Ω +∆ t (∇ŵm,∇vh)0,Ω = 0, (39)

ãDG
h (ĉm,vh)+ ∑

K∈Th(Ω)

(ĝ(ĉm,vh)0,K − (ŵm,vh)0,Ω = 0.

(ii) Using similar arguments as in [26, 29] it can be shown that ĉm
h is bounded in

the C0IPDG norm uniformly in h, i.e., there exists a constantC(1)
B > 0, independent

of h, such that

‖ĉm
h ‖2,h,Ω ≤C(1)

B , 0≤ m≤ M. (40)

Since V(p)h is continuously embedded in C(Ω̄ , there exists another constant C(2)
B > 0,

independent of h, such that

max
x∈Ω̄

|ĉm
h (x)| ≤C(2)

B , 0≤ m≤ M. (41)

Lemma 1. Let ĝ be given by(34e). Then there exists a constant C1, independent of

h, such that for̂cm ∈ Hr(Ω), r ≥ 5,0≤ m≤ M, andĉm
h ,vh ∈V(p)

h , p≥ 2, it holds

|(ĝ(ĉm)− ĝ(ĉm
h ),vh)0,Ω | ≤C1 ‖ĉm− ĉm

h ‖2,h,Ω ‖vh‖0,Ω . (42)

Proof. Observing (34e) we have

∑
K∈Th(Ω)

(ĝ(ĉm)− ĝ(ĉm
h ),vh)0,K =− ∑

K∈Th(Ω)

(â(ĉm)∆ ĉm− â(ĉm
h )∆ ĉm

h ,vh)0,K (43)

− ∑
K∈Th(Ω)

a2exp(2τt)(ĉm|∇ĉm|2− ĉm
h |∇ĉm

h |2,vh)0,K +( f̂0(ĉ
m)− f̂0(ĉ

m
h ),vh)0,Ω .

In view of (3)

â(ĉm
h )∆ ĉm

h − â(ĉm)∆ ĉm = (â(ĉm)− â(ĉm
h ))∆ ĉm+ â(ĉm

h )(∆ ĉm−∆ ĉm
h ) =

a2exp(2τt)(ĉm+ ĉm
h )(ĉ

m− ĉm
h )∆ ĉm+ â(ĉm

h )(∆ ĉm−∆ ĉm
h ).

Then the first term on the right-hand side of (43) can be estimated according to

| ∑
K∈Th(Ω)

(â(ĉm)∆ ĉm− â(ĉm
h )∆ ĉm

h ,vh)0,K | ≤ (44)

D1 ∑
K∈Th(Ω)

‖ĉm− ĉm
h ‖0,K ‖vh‖0,K +D2 ∑

K∈Th(Ω)

‖∆ ĉm−∆ ĉm
h ‖0,K ‖vh‖0,K ,

where the constantsDi ,1≤ i ≤ 2, are given by

D1 := max
x∈Ω̄

|(ĉm+ ĉm
h )(x)∆ ĉm(x)|, D2 := max

x∈Ω̄
|a0+a2exp(2τT)(ĉm

h (x))
2|.
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We note that ˆcm,∆ ĉm ∈C(Ω̄ ), since forr ≥ 5 the spacesZ∩Hr(Ω) andHr−2(Ω)
are continuously embedded inC(Ω̄). Moreover, due to (41) ˆcm

h is bounded inC(Ω̄ )
uniformly in h. Hence, the constantsDi ,1 ≤ i ≤ 2, are well defined and bounded
from above independent ofh.
For the second term on the right-hand side of (43) we split

a2exp(2τt) (ĉm |∇ĉm|2− ĉm
h |∇ĉm

h |2,vh)0,K ,K ∈ Th(Ω),

by means of

(a2exp(2τt) (ĉm |∇ĉm|2− ĉm
h |∇ĉm

h |2,vh)0,K = (45)

a2exp(2τt) ((ĉm− ĉm
h ) |∇ĉm|2,vh)0,K +a2exp(2τt) (ĉm

h ∇ĉm · (∇ĉm−∇ĉm
h ),vh)0,K

+a2exp(2τt) (ĉm
h ∇ĉm

h · (∇ĉm−∇ĉm
h ),vh)0,K .

For the first term on the right-hand side of (45) we obtain

| ∑
K∈Th(Ω)

a2exp(2τt) ((ĉm− ĉm
h ) |∇ĉm|2,vh)0,K | ≤ (46)

D3 ∑
K∈Th(Ω)

‖ĉm− ĉm
h ‖0,K ‖vh‖0,K ,

where

D3 := a2exp(2τT) max
x∈Ω̄

|∇ĉm(x)|2

which is well defined, since∇ĉm ∈C(Ω̄)2.
Likewise, observing (23), the second term on the right-handside of (45) can be
estimated from above as follows

| ∑
K∈Th(Ω)

a2exp(2τt) (ĉm
h ∇ĉm · (∇ĉm−∇ĉm

h ),vh)0,K | ≤ (47)

D4 ∑
K∈Th(Ω)

‖∇ĉm−∇ĉm
h ‖0,K ‖vh‖0,K ≤ D4‖∇(ĉm− ĉm

h )‖0,Ω ‖vh‖0,Ω ≤

CPF D4 |ĉm− ĉm
h |2,h,Ω ‖vh‖0,Ω ,

where due to (41)

D4 := a2exp(2τT) max
x∈Ω̄

|ĉm
h (x) ∇ĉm(x)| ≤ a2exp(2τT)C(2)

B max
x∈Ω̄

|∇ĉm(x)|.

Since∇ĉm ∈C(Ω̄ )2, we note thatD4 is well defined and independent ofh.
For the third term on the right-hand side of (45) we use the generalized Hölder
inequality (1) withv1 = ∇ĉm

h ,v2 = ∇ĉm−∇ĉm
h ,v3 = vh, andp1 = 4/(1+2ε), p2 =

4/(1−2ε),0< ε ≪ 1, andp3 = 2.



C0IPDG approximation of a sixth order Cahn-Hilliard equation 15

| ∑
K∈Th(Ω)

a2exp(2τt) (ĉm
h ∇ĉm

h · (∇ĉm−∇ĉm
h ),vh)0,K | ≤ (48)

D5 ∑
K∈Th(Ω)

∫

K

|∇ĉm
h | |∇ĉm−∇ĉm

h | |vh| dx ≤

D5 ∑
K∈Th(Ω)

‖ĉm
h ‖1,4/(1+2ε),K ‖ĉm− ĉm

h ‖1,4/(1−2ε),K ‖vh‖0,K ≤

D5 ‖ĉm
h ‖1,4/(1+2ε),Ω ∑

K∈Th(Ω)

‖ĉm− ĉm
h ‖1,4/(1−2ε),K ‖vh‖0,K,

where

D5 := a2exp(2τT) max
x∈Ω̄

|ĉm
h (x)| ≤ a2exp(2τT)C(2)

B .

SinceH3/2−ε(Ω) is continuously embedded inW1,4/(1+2ε)(Ω) andV(p)
h is contin-

uously embedded inH3/2−ε(Ω) (cf., e.g., [5]), there exists a constantD6 > 0 such
that

‖ĉm
h ‖1,4/(1+2ε),Ω ≤ D6 ‖ĉm

h ‖2,h,Ω . (49)

Moreover,H2(K) is continuously embedded inW1,4/(1−2ε)(K) and hence, there ex-
ists a constantD7 > 0, which can be chosen independent ofh, such that for all
K ∈ Th(Ω) it holds

‖ĉm− ĉm
h ‖1,4/(1−2ε),K ≤ D7 ‖ĉm− ĉm

h ‖2,K . (50)

Using (49) and (50) in (48), it follows that

| ∑
K∈Th(Ω)

a2exp(2τt) (ĉm
h ∇ĉm

h · (∇ĉm−∇ĉm
h ),vh)0,K | ≤ (51)

D8 ∑
K∈Th(Ω)

‖ĉm− ĉm
h ‖2,K ‖vh‖0,K ,

where due to (40)

D8 := D5 D6 D7 ‖ĉm
h ‖2,h,Ω ≤ D5 D6 D7 C(1)

B .

Finally, for the third term on the right-hand side of (43) we use that

f̂0(ĉ
m)− f̂0(ĉ

m
h ) =

1∫

0

f̂ ′0(ĉ
m+ s (ĉm

h − ĉm)) ds(ĉm− ĉm
h )

to obtain
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|( f̂0(ĉ
m)− f̂0(ĉ

m
h ),vh)0,Ω | ≤ D9 ∑

K∈Th(Ω)

‖ĉm− ĉm
h ‖0,K ‖vh‖2

0,K , (52)

where

D9 := max
x∈Ω̄

1∫

0

| f̂ ′0(ĉm+ s (ĉm
h − ĉm))| ds.

Now, (42) is a direct consequence of (44),(46),(47),(51), and (52).

Corollary 1. Under the assumptions ofLemma 1there exists a constant C2 > 0,
independent of h, such that for0≤ m≤ M it holds

‖Ihŵm− ŵm
h ‖0,Ω ≤C2 h−2 ‖ĉm− ĉm

h ‖2,h,Ω + ‖ŵm− Ihŵm‖0,Ω . (53)

Proof. Obviously, we have

‖Ihŵm− ŵm
h ‖0,Ω = sup

vh∈V
(p)
h

|(Ihŵm− ŵm
h ,vh)0,Ω |

‖vh‖0,Ω
. (54)

Using (6b) and (26b) we find

(Ihŵm− ŵm
h ,vh)0,Ω = (Ihŵm− ŵm,vh)0,Ω +(ŵm− ŵm

h ,vh)0,Ω = (55)

(Ihŵm− ŵm,vh)0,Ω +aDG
h (ĉm− ĉm

h ,vh)+ (ĝ(ĉm)− ĝ(ĉm
h ),vh)0,Ω .

In view of (25), for the second term on the right-hand side of (55) we obtain

|aDG
h (ĉm− ĉm

h ,vh)| ≤ Γ ‖ĉm− ĉm
h ‖2,h,Ω ‖vh‖2,h,Ω . (56)

On the other hand, using (42) from Lemma 1 we find

|aDG
h (ĉm− ĉm

h ,vh)+ (ĝ(ĉm)− ĝ(ĉm
h ),vh)0,Ω | ≤C1 ‖ĉm− ĉm

h ‖2,h,Ω ‖vh‖2,h,Ω . (57)

The inverse inequalities (15a)(15b) and the trace inequality (15c) imply the exis-
tence of a constantD10 > 0, independent ofh, such that

‖vh‖2,h,Ω ≤ D11 h−2 ‖vh‖0,Ω . (58)

Using (57) and (58) in (55) gives the assertion.

We introduce the interpolation errors:
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e(1)int (ĉ
ℓ) := ∆ t ‖ĉℓ− Ihĉℓ‖2

0,Ω , e(2)int (ĉ
ℓ) := ∆ t ‖∇(ĉℓ− Ihĉ

ℓ)‖2
0,Ω , 0≤ ℓ≤ m,

e(3)int (ĉ
ℓ) := ∆ t ‖ ĉℓ− ĉℓ−1

∆ t
− Ih(

ĉℓ− ĉℓ−1

∆ t
)‖2

0,Ω , 1≤ ℓ≤ m,

e(4)int (ĉ
ℓ) := ∆ t ‖ĉℓ− Ihĉℓ‖2

2,h,Ω , 0≤ ℓ≤ m, (59)

e(5)int (ĉ
ℓ) := ∆ t ‖ ĉℓ− ĉℓ−1

∆ t
− Ih(

ĉℓ− ĉℓ−1

∆ t
)‖2

2,h,Ω , 1≤ ℓ≤ m,

e(1)int (ŵ
ℓ) := ∆ t ‖ŵℓ− Ihŵ

ℓ‖2
0,Ω , e(2)int (ŵ

ℓ) := ∆ t ‖∇(ŵℓ− Ihŵ
ℓ)‖2

0,Ω , 0≤ ℓ≤ m,

e(3)int (ŵ
ℓ) := ∆ t ‖ ŵℓ− ŵℓ−1

∆ t
− Ih(

ŵℓ− ŵℓ−1

∆ t
)‖2

0,Ω , 1≤ ℓ≤ m.

Lemma 2. Under the assumptions of Theorem 5, forη ,ξ > 0 there exists a constant
C3 > 0, independent of h, such that it holds

1
2

ησ ‖ĉm− ĉm
h ‖2

0,Ω +
1
2

τησ∆ t ‖ĉm− ĉm
h ‖2

0,Ω ≤ (60)

3
2

ηξ−1MCPF∆ t ‖ĉm− ĉm
h ‖2

2,h,Ω +
1
3

ηξ M∆ t ‖∇(ŵm− ŵm
h )‖2

0,Ω +

C3

(
(1+∆ t) ‖ĉm−1− ĉm−1

h ‖2
0,Ω + ‖ĉm−1− Ihĉm−1‖2

0,Ω +
3

∑
i=1

e(i)int(ĉ
m)
)
.

Proof. We have

ησ ‖ĉm− ĉm
h ‖2

0,Ω + τησ∆ t ‖ĉm− ĉm
h ‖2

0,Ω = (61)

ησ (ĉm− ĉm
h , ĉ

m− Ihĉm)0,Ω + τησ∆ t (ĉm− ĉm
h , ĉ

m− Ihĉ
m)0,Ω +

ησ (ĉm− ĉm
h , Ihĉm− ĉm

h )0,Ω + τησ∆ t (ĉm− ĉm
h , Ihĉm− ĉm

h )0,Ω .

By Young’s inequality withε = 1/4 the first two terms on the right-hand side of
(61) can be estimated from above according to

ησ |(ĉm− ĉm
h , ĉ

m− Ihĉ
m)0,Ω | ≤ ησ ‖ĉm− ĉm

h ‖0,Ω ‖ĉm− Ihĉ
m‖0,Ω ≤ (62a)

ησ ‖ĉm− ĉm
h ‖0,Ω

(
∆ t ‖ ĉm− ĉm−1

∆ t
− Ih(

ĉm− ĉm−1

∆ t
)‖0,Ω + ‖ĉm−1− Ihĉ

m−1‖0,Ω

)

≤ 1
4

ησ(1+ τ∆ t) ‖ĉm− ĉm
h ‖2

0,Ω +ησ ‖ĉm−1− Ihĉ
m−1‖2

0,Ω +ηστ−1 e(3)int (ĉ
m),

τησ∆ t |(ĉm− ĉm
h , ĉ

m− Ihĉm)0,Ω | ≤ 1
4

τησ∆ t ‖ĉm− ĉm
h ‖2

0,Ω + τησ e(1)int (ĉ
m).

(62b)

In view of (37a) and (38a), for the last two terms on the right-hand side of (61) we
find
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ησ (ĉm− ĉm
h , Ihĉm− ĉm

h )0,Ω + τησ∆ t (ĉm− ĉm
h , Ihĉm− ĉm

h )0,Ω = (63)

ησ (ĉm−1− ĉm−1
h , Ihĉm− ĉm

h )0,Ω −ηM∆ t (∇(ŵm− ŵm
h ),∇(Ihĉm− ĉm

h ))0,Ω .

The first term on the right-hand side of (63) can be estimated from above as follows:

ησ |(ĉm−1− ĉm−1
h , Ihĉm− ĉm

h )0,Ω | ≤ (64)

ησ |(ĉm−1− ĉm−1
h , Ihĉm− ĉm)0,Ω |+ησ |(ĉm−1− ĉm−1

h , ĉm− ĉm
h )0,Ω |.

As in (62a), for the first term on the right-hand side of (64) Young’s inequality with
ε = 1/4 yields

ησ |(ĉm−1− ĉm−1
h , ĉm− Ihĉ

m)0,Ω | ≤ (65)

1
4

ησ(1+ τ∆ t) ‖ĉm−1− ĉm−1
h ‖2

0,Ω +ησ‖ĉm−1− Ihĉm−1‖2
0,Ω + τ−1ησ e(3)int (ĉ

m).

For the second term on the right-hand side of (64) we obtain

ησ |(ĉm−1− ĉm−1
h , ĉm− ĉm

h )0,Ω | ≤ ησ
(1

4
‖ĉm− ĉm

h ‖2
0,Ω + ‖ĉm−1− ĉm−1

h ‖2
0,Ω

)
.

(66)

For the second term on the right-hand side of (63) Young’s inequality with ε = 1/6
and the Poincaré-Friedrichs inequality (23) yield

ηM∆ t |(∇(ŵm− ŵm
h ),∇(Ihĉm− ĉm

h ))0,Ω | ≤ (67)

ηM∆ t
(
|(∇(ŵm− ŵm

h ),∇(Ihĉm− ĉm))0,Ω |+ |(∇(ŵm− ŵm
h ),∇(ĉm− ĉm

h ))0,Ω |
)

≤

ηM∆ t
(1

3
ξ ‖∇(ŵm− ŵm

h )‖2
0,Ω +

3
2

ξ−1CPF ‖ĉm− ĉm
h ‖2

2,h,Ω +
3
2

ηξ−1M e(2)int (ĉ
m).

The assertion follows from (61)-(67).

Lemma 3. Under the assumptions of Theorem 5, forλ > 0 there exist constants
Ci > 0,4≤ i ≤ 6, independent of h, such that it holds

5
6

λM∆ t ‖∇(ŵm− ŵm
h )‖2

0,Ω +
1
2

λ σγ(1+∆ t) ‖ĉm− ĉm
h ‖2

2,h,Ω ≤ (68)

λ σ(C4+ τC5∆ t) ‖ĉm− ĉm
h ‖2

0,Ω +C6

(
(1+∆ t) ‖ĉm−1− ĉm−1

h ‖2
0,Ω +

‖ĉm−1− ĉm−1
h ‖2

2,h,Ω +(1+h−4)(‖ĉm−1− Ihĉm−1‖2
0,Ω + ‖ĉm−1− Ihĉ

m−1‖2
2,h,Ω ) +

‖ŵm−1− Ihŵm−1‖2
0,Ω +(1+h−4)(e(1)int (ĉ

m)+e(3)int (ĉ
m))+e(4)int (ĉ

m)+e(5)int (ĉ
m) +

e(1)int (ŵ
m)+e(2)int (ŵ

m)+e(1)int (ĉ
m−1)+e(1)int (ŵ

m−1)
)
.

Proof. We have
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λM∆ t ‖∇(ŵm− ŵm
h )‖2

0,Ω = λM∆ t (∇(ŵm− ŵm
h ),∇(ŵm− Ihŵ

m)0,Ω + (69)

λM∆ t (∇(ŵm− ŵm
h ),∇(Ihŵm− ŵm

h ))0,Ω .

For the first term on the right-hand side of (69) Young’s inequality with ε = 1/6
yields

λM∆ t |(∇(ŵm− ŵm
h ),∇(ŵm− Ihŵ

m))0,Ω | ≤ (70)

1
6

λM∆ t ‖∇(ŵm− ŵm
h )‖2

0,Ω +
3
2

λM e(2)int (ŵ
m).

Taking advantage of (37a) and (38a), for the second term on the right-hand side of
(69) it follows that

λM∆ t (∇(ŵm− ŵm
h ),∇(Ihŵm− ŵm

h ))0,Ω = λ σ (ĉm−1− ĉm−1
h , Ihŵm− ŵm

h )0,Ω

− τλ σ∆ t (ĉm− ĉm
h , Ihŵm− ŵm

h )0,Ω −λ σ (ĉm− ĉm
h , Ihŵm− ŵm

h )0,Ω =

λ σ (ĉm−1− ĉm−1
h , Ihŵm− ŵm)0,Ω − τλ σ∆ t (ĉm− ĉm

h , Ihŵm− ŵm)0,Ω

−λ σ (ĉm− ĉm
h , Ihŵm− ŵm)0,Ω +λ σ (ĉm−1− ĉm−1

h , ŵm− ŵm
h )0,Ω

− τλ σ∆ t (ĉm− ĉm
h , ŵ

m− ŵm
h )0,Ω −λ σ (ĉm− ĉm

h , ŵ
m− ŵm

h )0,Ω . (71)

The first and the third term on the right-hand side of (71) can be estimated from
above as the corresponding terms in Lemma 2 using Young’s inequality with ε = 1
andε = 1/6:

λ σ |(ĉm−1− ĉm−1
h , Ihŵm− ŵm)0,Ω | ≤ λ σ(1+∆ t) ‖ĉm−1− ĉm−1

h ‖2
0,Ω + (72a)

1
4

λ σ‖ŵm−1− Ihŵ
m−1‖2

0,Ω +
1
4

λ σ e(3)int (ŵ
m),

λ σ |(ĉm− ĉm
h , Ihŵm− ŵm)0,Ω | ≤ λ σ(1+

1
6

∆ t) ‖ĉm− ĉm
h ‖2

0,Ω + (72b)

1
4

λ σ ‖ŵm−1− Ihŵ
m−1‖2

0,Ω +
3
2

λ σ e(3)int (ŵ
m).

For the second term on the right-hand side of (71) Young’s inequality with ε = 1
implies

τλ σ∆ t |(ĉm− ĉm
h , Ihŵm− ŵm)0,Ω | ≤ τλ σ

(
∆ t ‖ĉm− ĉm

h ‖2
0,Ω +

1
4

e(1)int (ŵ
m)
)
. (73)

For the last three terms on the right-hand side of (71) we obtain

λ σ (ĉm−1− ĉm−1
h , ŵm− ŵm

h )0,Ω − τλ σ∆ t (ĉm− ĉm
h , ŵ

m− ŵm
h )0,Ω (74)

−λ σ (ĉm− ĉm
h , ŵ

m− ŵm
h )0,Ω = λ σ (ĉm−1− Ihĉm−1, ŵm− ŵm

h )0,Ω

− τλ σ∆ t (ĉm− Ihĉ
m, ŵm− ŵm

h )0,Ω −λ σ (ĉm− Ihĉ
m, ŵm− ŵm

h )0,Ω

+λ σ (Ihĉm−1− ĉm−1
h , ŵm− ŵm

h )0,Ω − τλ σ∆ t (Ihĉm− ĉm
h , ŵ

m− ŵm
h )0,Ω

−λ σ (Ihĉm− ĉm
h , ŵ

m− ŵm
h )0,Ω .
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Using Corollary (1) and Young’s inequality withε = 1/18 andε = 1/2 , the first
term on the right-hand side of (74) can be estimated from above as follows:

λ σ |(ĉm−1− Ihĉm−1, ŵm− ŵm
h )0,Ω | ≤ (75)

λ σ ‖ĉm−1− Ihĉ
m−1‖0,Ω

(
‖ŵm− Ihŵ

m‖0,Ω + ‖Ihŵ
m− ŵm

h ‖0,Ω

)
≤

λ σ ‖ĉm−1− Ihĉ
m−1‖0,Ω

(
2 ‖ŵm− Ihŵ

m‖0,Ω +C2h−2 ‖ĉm− ĉm
h ‖2,h,Ω

)
≤

λ σ ‖ĉm−1− Ihĉ
m−1‖0,Ω

(
2∆ t ‖ ŵm− ŵm−1

∆ t
− Ih(

ŵm− ŵm−1

∆ t
)‖0,Ω +

2 ‖ŵm−1− Ihŵ
m−1‖0,Ω +C2h−2 ‖ĉm− ĉm

h ‖2,h,Ω

)
≤

1
18

λ σ ‖ĉm− ĉm
h ‖2

2,h,Ω +
9
2

λ σC2
2h−4 ‖ĉm−1− Ihĉm−1‖2

0,Ω +

λ σ
(
‖ĉm−1− Ihĉm−1‖2

0,Ω + ‖ŵm−1− Ihŵm−1‖2
0,Ω +e(1)int (ĉ

m−1)+e(3)int (ŵ
m)
)
.

Likewise, by Young’s inequality withε = 1/14,ε = 1/18, andε = 1/2 and observ-
ing ∆ t ≤ T, for the third term on the right-hand side of (74) we get

λ σ |(ĉm− Ihĉ
m, ŵm− ŵm

h )0,Ω | ≤ (76)

λ σ
(

∆ t ‖ ĉm− ĉm−1

∆ t
− Ih(

ĉm− ĉm−1

∆ t
)‖0,Ω + ‖ĉm−1− Ihĉ

m−1‖0,Ω

)
·

(
2∆ t ‖ ŵm− ŵm−1

∆ t
− Ih(

ŵm− ŵm−1

∆ t
)‖0,Ω +2 ‖ŵm−1− Ihŵ

m−1‖0,Ω

+C2h−2 ‖ĉm− ĉm
h ‖2,h,Ω

)
≤

1
14

λ σ∆ t ‖ĉm− ĉm
h ‖2

2,h,Ω +λ σ
(
(
7
2

C2
2h−4+T) e(3)int (ĉ

m)+T e(3)int (ŵ
m)
)
+

λ σ
(

e(3)int (ĉ
m)+e(1)int (ŵ

m)+e(3)int (ŵ
m)+e(1)int (ĉ

m−1)
)
+

1
18

λ σC3 ‖ĉm− ĉm
h ‖2

2,h,Ω +
9
2

λ σC2
2h−4 ‖ĉm−1− Ihĉ

m−1‖2
0,Ω +

λ σ ‖ĉm−1− Ihĉm−1‖2
0,Ω +λ σ‖ŵm−1− Ihŵ

m−1‖2
0,Ω .

Finally, for the second term on the right-hand side of (74) Young’s inequality with
ε = 1/14 andε = 1/2 gives

τλ σ∆ t |(ĉm− Ihĉm, ŵm− ŵm
h )0,Ω | ≤ (77)

τλ σ∆ t ‖ĉm− Ihĉ
m‖0,Ω

(
‖ŵm− Ihŵ

m‖0,Ω + ‖Ihŵ
m− ŵm

h ‖0,Ω

)
≤

τλ σ∆ t ‖ĉm− Ihĉ
m‖0,Ω

(
2 ‖ŵm− Ihŵ

m‖0,Ω +C2 h−2 ‖ĉm− ĉm
h ‖2,h,Ω

)
≤

1
14

τλ σγ∆ t ‖ĉm− ĉm
h ‖2

2,h,Ω +
7
2

τλ σ
(

1+ γ−1C2
2h−4

)
e(1)int (ĉ

m)+ τλ σ e(1)int (ŵ
m).
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Using (37b) and (38b), for the first of the last three terms on the right-hand side of
(74) we obtain

λ σ (Ihĉm−1− ĉm−1
h , ŵm− ŵm

h )0,Ω = (78a)

λ σ
(

aDG
h (ĉm− ĉm

h , Ihĉm−1− ĉm−1
h )+ (ĝ(ĉm)− ĝ(ĉm

h ), Ihĉm−1− ĉm−1
h )0,Ω

)
=

λ σ
(

aDG
h (ĉm− ĉm

h , Ihĉm−1− ĉm−1)+aDG
h (ĉm− ĉm

h , ĉ
m−1− ĉm−1

h )
)
+

λ σ
(
(ĝ(ĉm)− ĝ(ĉm

h ), Ihĉm−1− ĉm−1)+ (ĝ(ĉm)− ĝ(ĉm
h ), ĉ

m−1− ĉm−1
h )0,Ω

)
.

Similarly, for the second term we get

τλ σ∆ t (Ihĉm− ĉm
h , ŵ

m− ŵm
h )0,Ω = (78b)

τλ σ∆ t
(

aDG
h (ĉm− ĉm

h , Ihĉm− ĉm)+aDG
h (ĉm− ĉm

h , ĉ
m− ĉm

h )
)
+

τλ σ∆ t
(
(ĝ(ĉm)− ĝ(ĉm

h ), Ihĉm− ĉm)+ (ĝ(ĉm)− ĝ(ĉm
h ), ĉ

m− ĉm
h )0,Ω

)
,

whereas for the third term we obtain

−λ σ (Ihĉm− ĉm
h , ŵ

m− ŵm
h )0,Ω = (78c)

−λ σ
(

ãDG
h (ĉm− ĉm

h , Ihĉm− ĉm)+ ãDG
h (ĉm− ĉm

h , ĉ
m− ĉm

h )
)

−λ σ
(
(ĝ(ĉm)− ĝ(ĉm

h ), Ihĉm− ĉm)0,Ω +(ĝ(ĉm)− ĝ(ĉm
h ), ĉ

m− ĉm
h )0,Ω

)
.

Taking advantage of (25) and (42) from Lemma 1 and using Young’s inequality with
ε = 1/18, for (78a) we can establish the upper bound

λ σ |(Ihĉm−1− ĉm−1
h , ŵm− ŵm

h )0,Ω | ≤ 2
9

λ σ ‖ĉm− ĉm
h ‖2

2,h,Ω + (79)

9
2

λ σ(Γ 2+C2
1) ‖ĉm−1− ĉm−1

h ‖2
2,h,Ω +

9
2

λ σ(Γ 2+C2
1) ‖ĉm−1− Ihĉm−1

h ‖2
2,h,Ω .

Similarly, for (78b) Gårding’s inequality (24) and Young’s inequality withε = 1/14
yield

− τλ σ∆ t (Ihĉm− ĉm
h , ŵ

m− ŵm
h )0,Ω ≤−τλ σγ∆ t ‖ĉm− ĉm

h ‖2
2,h,Ω + (80)

τλ σβ ∆ t ‖ĉm− ĉm
h ‖2

0,Ω +
3
14

τλ σ∆ t ‖ĉm− ĉm
h ‖2

2,h,Ω +

7
2

τλ σγ−1
(
C2

1∆ t ‖ĉm− ĉm
h ‖2

0,Ω +
(
C2

1 e(1)int (ĉ
m)+Γ 2 e(4)int (ĉ

m)
))

.

Finally, for (78c) another application of Gårding’s inequality (24) and Young’s in-
equality withε = 1/14 andε = 1/18 we obtain
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−λ σ (Ihĉm− ĉm
h , ŵ

m− ŵm
h )0,Ω ≤ λ σ

(
− γ ‖ĉm− ĉm

h ‖2
2,h,Ω +β ‖ĉm− ĉm

h ‖2
0,Ω

)
+

3
18

λ σ ‖ĉm− ĉm
h ‖2

2,h,Ω +
1
7

λ σ∆ t ‖ĉm− ĉm
h ‖2

2,h,Ω +
9
2

λ σC2
1 ‖ĉm− ĉm

h ‖2
0,Ω +

9
2

λ σ
(
C2

1 ‖‖ĉm−1− Ihĉ
m−1‖2

0,Ω +Γ 2 ‖ĉm−1− Ihĉ
m−1‖2

2,h,Ω

)
+

7
2

λ σ
(
C2

1 e(3)int (ĉ
m)+Γ 2 e(5)int (ĉ

m)
)
. (81)

The assertion follows from (69)-(81).

Proposition 8 Under the assumptions of Theorem 5 there exists a constant C7 > 0,
independent of h, such that it holds

‖ĉm− ĉm
h ‖2

0,Ω + τ∆ t ‖ĉm− ĉm
h ‖2

0,Ω +
1
2

λ σγ
(
‖ĉm− ĉm

h ‖2
2,h,Ω (82)

+∆ t ‖ĉm− ĉm
h ‖2

2,h,Ω

)
+M∆ t ‖∇(ŵm− ŵm

h )‖2
0,Ω ≤

C7

(
‖ĉm−1− ĉm−1

h ‖2
0,Ω + ‖ĉm−1− ĉm−1

h ‖2
2,h,Ω +h−4 ‖ĉm−1− Ihĉm−1‖2

0,Ω +

‖ĉm−1− Ihĉm−1‖2
2,h,Ω + ‖ŵm−1− Ihŵ

m−1‖2
0,Ω +h−4(e(1)int (ĉ

m)+e(3)int (ĉ
m)) +

5

∑
i=4

e(i)int(ĉ
m)+

3

∑
i=1

e(i)int(ŵ
m)+e(1)int (ĉ

m−1)+e(1)int (ŵ
m−1)

)
.

Proof. The estimates (60) from Lemma 2 and (68) from Lemma 3 imply theexis-
tence of a constantD10 > 0, independent ofh, such that

σ(η − 3
2

λC6) ‖ĉm− ĉm
h ‖2

0,Ω + τσ(η − 1
2

λC7)∆ t ‖ĉm− ĉm
h ‖2

0,Ω + (83)

1
2

λ σγ ‖ĉm− ĉm
h ‖2

2,h,Ω +
1
2

λ σ(τγ − 3
2

ηξ−1CPF )∆ t‖ĉm− ĉm
h ‖2

2,h,Ω +

M(
5
6

λ − 1
3

ηξ )∆ t ‖∇(ŵm− ŵm
h )‖2

0,Ω ≤ D10

(
(1+∆ t) ‖ĉm−1− ĉm−1

h ‖2
0,Ω +

+ ‖ĉm−1− ĉm−1
h ‖2

2,h,Ω +(1+h−4)(‖ĉm−1− Ihĉ
m−1‖2

0,Ω + ‖ĉm−1− Ihĉm−1‖2
2,h,Ω )

+ ‖ŵm−1− Ihŵ
m−1‖2

0,Ω +(1+h−4)(e(1)int (ĉ
m)+e(3)int (ĉ

m))+e(2)int (ĉ
m) +

5

∑
i=4

e(i)int(ĉ
m)+

3

∑
i=1

e(i)int(ŵ
m)+e(1)int (ĉ

m−1)+e(1)int (ŵ
m−1)

)
.

We choose6
5 < λ < 2 andη > 0 such that

η −max(
3
2

C6,
1
2

C7)λ ≥ σ−1.

Then, we chooseξ > 0 by means of
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5
6

λ − 1
3

ηξ ≥ 1 ⇐⇒ ξ ≤ 5λ −6
2η

.

Finally, we chooseτ > 0 according to

γτ − 3
2

ηξ−1CPF ≥ γ ⇐⇒ τ ≥ 2ξ γ +3ηCPF

2ξ γ
.

For this choice ofλ ,η ,ξ , andτ, the assertion follows from (83) observing that

e(1)int (ĉ
m)≤ e(4)int (ĉ

m),e(2)int (ĉ
m)≤C2

PFe(4)int (ĉ
m),e(3)int (ĉ

m)≤ e(5)int (ĉ
m), and‖v‖0,Ω ≤‖v‖2,h,Ω ,v∈

V(p)
h +Z.

Proposition 9 Under the assumptions of Theorem 5 there exists a constant C8 > 0,
independent of h, such that it holds

‖ĉm− ĉm
h ‖2

2,h,Ω +∆ t
m

∑
ℓ=1

‖ĉℓ− ĉℓh‖2
2,h,Ω +∆ t

m

∑
ℓ=1

‖∇(ŵℓ− ŵℓ
h)‖2

0,Ω ≤ (84)

C8

(
h−4

m

∑
ℓ=1

(e(1)int (ĉ
ℓ)+e(3)int (ĉ

ℓ))+
5

∑
i=4

m

∑
ℓ=1

e(i)int(ĉ
ℓ)+

3

∑
i=1

m

∑
ℓ=1

e(i)int(ŵ
ℓ) +

h−4 ‖c0− Ihc0‖2
0,Ω +(1+h−4) ‖c0− Ihc0‖2

2,h,Ω + ‖w0− Ihw0‖2
0,Ω

)
,

where w0 by (9b)with c= c0 and w= w0.

Proof. The proof is by induction onm. For m= 1 the assertion follows from (82)
taking into account that ˆc0 = c0 andŵ0 = w0. Let us assume that (84) holds true for
m−1. Observing

‖ĉm−1− Ihĉ
m−1‖0,Ω ≤ ∆ t

m−1

∑
ℓ=1

‖ ĉℓ− ĉℓ−1

∆ t
− Ih

ĉℓ− ĉℓ−1

∆ t
‖0,Ω + ‖c0− Ihc0‖0,Ω

and the same for‖ĉm−1 − Ihĉm−1‖2,h,Ω and‖ŵm−1 − Ihŵm−1‖0,Ω , it follows from
(82) that (84) is satisfied form as well.

Proof of Theorem 5:We havetm → t as∆ t → 0. Due to the regularity assumptions
(28a),(28b) for∆ t → 0 the left-hand side of (84) converges to

‖(ĉ− ĉh)(·, t)‖2
2,h,Ω +

t∫

0

‖ĉ− ĉh‖2
2,h,Ω ds+

t∫

0

‖∇(ŵ− ŵh)‖2
0,Ω ds.

On the other hand, for the sum of the interpolation errors (59) it holds
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m

∑
ℓ=1

e(1)int (ẑ
ℓ)→

t∫

0

‖ẑ− Ihẑ‖2
0,Ω ds, ẑ= ĉ andẑ= ŵ,

m

∑
ℓ=1

e(3)int (ẑ
ℓ)→

t∫

0

‖∂ ẑ
∂s

− Ih
∂ ẑ
∂s

‖2
0,Ω ds, ẑ= ĉ andẑ= ŵ,

m

∑
ℓ=1

e(4)int (ĉ
ℓ)→

t∫

0

‖ĉ− Ihĉ‖2
2,h,Ω ds,

m

∑
ℓ=1

e(5)int (ĉ
ℓ)→

t∫

0

‖∂ ĉ
∂s

− Ih
∂ ĉ
∂s

‖2
2,h,Ω ds,

m

∑
ℓ=1

e(2)int (ŵ
ℓ)→

t∫

0

‖∇(ŵ− Ihŵ)‖2
0,Ω ds.

Hence, taking (30),(31) into account, (32) holds true forc = ĉ. Finally, backtrans-
formation according to (33) allows to conclude. �

6 Discretization in time by singly diagonally implicit
Runge-Kutta methods

For the discretization in time of the C0IPDG approximation (26a)-(26c) we use
(s,q) Singly Diagonally Implicit Runge-Kutta (SDIRK) methods ofstages and
orderq with respect to a partitioning of the time interval[0,T] into subintervals
[tm−1, tm] of lengthτm := tm− tm−1,1 ≤ m≤ M (cf., e.g., [1, 7, 19]). In particular,
for polynomial orderp = 2 of the C0IPDG approximation we use a(2,2) SDIRK
method with coefficients given by the Butcher scheme in Table6.1

Table 1 Butcher scheme of a 2-stage SDIRK method of orderq= 2

κ κ 0
1 1−κ κ

1−κ κ
κ = 1± 1

2

√
2

If the polynomial degree isp = 3, we use a(3,3) SDIRK method with Butcher
scheme given by Table 6.2, and forp = 4 we use a(3,4) SDIRK method with
Butcher scheme given by Table 6.3.
The fully discrete approximation represents a parameter dependent nonlinear alge-
braic system with the time-step size as a parameter which is solved by a predictor-
corrector continuation strategy with constant continuation as a predictor and New-
ton’s method as a corrector [9, 20]. The predictor-corrector continuation strategy
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Table 2 Butcher scheme of a 3-stage SDIRK method of orderq= 3

α α 0 0
1+α

2
1−α

2 α 0
1 b0 b1 α

b0 b1 α

whereα ≈ 0.44 is the root ofp(x) = x3−3x2+ 3
2x− 1

6 , b0 =− 6α2−16α+1
4 , andb1 =

6α2−20α+5
4

(cf. [1]).

Table 3 Butcher scheme of a 3-stage SDIRK method of orderq= 4

(1+κ)/2 (1+κ)/2 0 0
1
2 −κ/2 (1+κ)/2 0

(1−κ)/2 1+κ −(1+2κ) (1+κ)/2
1/(6κ2) 1−1/(3κ2) 1/(6κ2)

κ = 2 cos(π/18)/
√

3

features an adaptive choice of the continuation parameter.For details we refer to
[2].

7 Numerical results

We consider the initial-boundary value problem (2a)-(2c) in Q := Ω × (0,T] with
Ω :=(0,L)2,L :=1.0·10−4m, andT := 1.0·10−1s. The physical parametersβ ,κ ,σ ,
anda0,a2,h0,M are given in Table 4 in their physical units. We use the reference
quantities

Lre f := 1.0 ·10−5m, Tre f := 1.0 ·10−2s, σre f := 1.0Jm−2 (85)

and scale all independent variables and parameters to dimensionless form. Hence,
the scaled domain and the scaled time interval becomeΩ = (0,10)2 and[0,10]. The
values of the parameters in dimensionless form are also listed in Table 4. The initial
concentrationc0 has been chosen as a smooth functionc0 ∈ C∞(Ω) satisfying the
compatibility conditions (5).

Table 4 Physical parameters in the sixth order Cahn Hilliard equation

Symbol Value Unit Dimensionless Value
σ 1.0 Jm−2 1.0
β 5.0 Jm−2 5.0
h0 5.0·10−1 1 5.0·10−1

M 1.0·10−13 m2s−1 1.0·10−3

κ 1.0·10−25 Jm2 1.0·10−1

a0 −4.0·10−12 J −4.0
a2 1.0·10−12 J 1.0
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Figure 1 shows a visualization of the microemulsification process obtained by the
numerical solution of the sixth order Cahn-Hilliard equation using a C0IPDG ap-
proximation withp= 2 and penalization parameterα = 25.0 and a 2-stage SDIRK
with q= 2 at time instantst = 0.60 (left) andt = 3.86 (right). The pure water phase
(c = 1) is depicted in dark blue, the pure oil phase (c = −1) in dark red, and the
microemulsion phase (c = 0) in light green. In Figure 1 (right), the formation of
oil-in-water and water-in-oil droplets is clearly visible.

Fig. 1 Formation of oil-in-water and water-in-oil droplets at time instantst = 0.60 (left) andt =
3.86 (right). C0IPDG approximation withp= 2 on a 128×128 grid and 2-stage SDIRK withq= 2
(from [2]).

The underlying finite element mesh is a geometrically conforming, simplicial trian-
gulationTh(Ω) of mesh sizeh. For h = 1/24,1/48 and att = 2.5 we have com-
puted the convergence rates in the mesh dependent C0IPDG-norm. Obviously, the
domainΩ does not have a boundaryΓ of classCr+1, r ≥ 5, and hence, we cannot
expect quasi-optimal convergence rates. Therefore, we also computed the conver-
gence rates for a patchΩ of elements around the midpointmΩ of Ω given by

ω :=
⋃
{K ∈ T2h(Ω) | mΩ ∈ N2h(K)},

whereN2h(K) is the set of nodal points inK. The convergence rates are as follows

errω(t) := log2
‖uh(·, t)−u2h(·, t)‖2,2h,ω
‖uh/2(·, t)−uh(·, t)‖2,2h,ω

,

errΩ (t) := log2
‖uh(·, t)−u2h(·, t)‖2,2h,Ω
‖uh/2(·, t)−uh(·, t)‖2,2h,Ω

.

In each case the time-step size has been chosen sufficiently small so that the error
due to discretization in time do not affect the error due to spatial discretization. The
convergence rates are shown in Table 5, Table 6, and Table 7.
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Table 5 Patchwise and global convergence rates for the semidiscrete C0IPDG approximation with
p= 2

errω (2.5) errΩ (2.5)

h= 1/24 1.06 0.66
h= 1/48 1.02 0.91

Table 6 Patchwise and global convergence rates for the semidiscrete C0IPDG approximation with
p= 3

errω (2.5) errΩ (2.5)

h= 1/24 1.83 1.68
h= 1/48 1.91 1.79

Table 7 Patchwise and global convergence rates for the semidiscrete C0IPDG approximation with
p= 4

errω (2.5) errΩ (2.5)

h= 1/24 2.83 2.56
h= 1/48 2.90 2.67

For domainsΩ with boundaryΓ of classCr+1, r ≥ 5, the quasi-optimal convergence
rates are 1.0 for p = 2, 2.0 for p = 3, and 3.0 for p = 4 (cf. Theorem 5). We see
that we get almost quasi-optimal convergence rates on the patchω in the‖ ·‖2,2h,ω-
norm, but as expected not quite as good convergence rates on the entire domainΩ
in the‖ · ‖2,2h,Ω-norm.
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