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On the sensitivity to the filtering radius in Leray
models of incompressible flow

Luca Bertagna, Annalisa Quaini, Leo G. Rebholz and Alessandro Veneziani

Abstract One critical aspect of Leray models for the Large Eddy Simulation (LES)
of incompressible flows at moderately large Reynolds number (in the range of few
thousands) is the selection of the filter radius. This drives the effective regulariza-
tion of the filtering procedure,and its selection is a trade-off between stability (the
larger, the better) and accuracy (the smaller, the better). In this paper, we consider
the classical Leray-a and a recently introduced (by one of the authors) Leray model
with a deconvolution-based indicator function, called Leray-a-NL. We investigate
the sensitivity of the solutions to the filter radius by introducing the sensitivity sys-
tems, analyzing them at the continuous and discrete levels, and numerically testing
them on two benchmark problems.

1 Introduction

The Direct Numerical Simulation (DNS) of the Navier-Stokes equations (NSE)
computes the evolution of all the significant flow structures by resolving them with
a properly refined mesh. Unfortunately, when convection dominates the dynamics
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- which happens in many practical applications - this requires very fine meshes,
making DNS computationally unaffordable for practical purposes. A possible way
to limit the computational costs associated with DNS without sacrificing accuracy
is to solve for the flow average, and model properly the effects of the (not directly
solved for) small scales on the (resolved) larger scales.

The Leray-a model (1-4) has emerged as a useful model for turbulent flow
predictions, thanks to the seminal work of Guerts, Holm, Titi and co-workers
[15, 14, 13, 11] in the early-mid 2000’s. The name of the model was given by Titi
to honor Leray, who used a similar model in 1934 as a theoretical tool to help in
understanding the well-posedness problem of the NSE [31]. The Leray-a model in
[31] describes the small scale effects by a set of equations to be added to the dis-
crete NSE formulated on the under-refined mesh. It was shown in [15, 14, 13, 11]
that the Leray-a model is well-posed, it can accurately predict turbulent flow on the
large scales, where it preserves Kolmogorov’s -5/3 law. Moreover, the model can
accurately predict the boundary layer. Over the last decade, much more theoretical
and computational work has been done to the Leray-a model and several variations
of it [38, 17, 18, 32, 23, 29, 19, 10, 33, 6, 2], most of which gives further evidence
of the usefulness of the model as an effective tool for coarse-mesh predictions of
higher Reynolds number flow.

The filtering radius a plays a central role in the Leray-a model, and Leray
type models in general, since it determines the amount of regularization to apply.
In particular, larger values lead to more regularized solutions, while for a = 0,
the models reduce to the NSE; see (1-4) below. Our interest herein is to under-
stand how solutions of the classical Leray-a model and one possible generaliza-
tion, called Leray-a-NL, depend on a . Parameter sensitivity investigations in fluid
flow problems are critical in understanding the reliability of computed solutions
[1, 34, 21, 36, 37, 3, 4, 16, 5]. However, it is often prohibitively costly to identify
the appropriate value by running many computations with different choices, espe-
cially when the flow problems require fine meshes. An attractive alternative is the
sensitivity equation method that computes explicitly the derivative of the solution
with respect to the parameter. This system can then be solved simultaneously with
the model at each time step of the simulation. Depending on the specific model, the
solution of the sensitivity system may be challenging, and its analysis and efficient
discretization design require specific investigation. This is exactly the purpose of
this paper for the two models of choice.

The outline of the paper is as follows. In Sec. 2 we introduce the continuous
Leray-a and Leray-a-NL models and derive the corresponding sensitivity equa-
tions. In Sec. 3 we propose efficient and stable numerical schemes for the approx-
imation of both models and their sensitivity systems. Finally, in Sec. 4 we test
the proposed numerical schemes against two benchmark problems. Conclusions are
drawn in Sec. 5.
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2 Problem definition

We consider a spacial domain W ⇢ Rd (d = 2 or 3) and time interval (0,T ), with
T > 0. The classical Leray-a model takes the form:

ut +u ·—u+—p�nDu = f in W ⇥ (0,T ), (1)
— ·u = 0 in W ⇥ (0,T ), (2)

—l �a2Du+u = u in W ⇥ (0,T ), (3)
— ·u = 0 in W ⇥ (0,T ), (4)

endowed with suitable boundary conditions, e.g.:

u = u = uin on Gin ⇥ (0,T ), (5)
u = u = 0 on Gwall ⇥ (0,T ), (6)

(n—u� pI) ·n = (a2—u�l I) ·n = 0 on Gout ⇥ (0,T ), (7)

and initial condition u = u0 in W ⇥ {0}. In (1-7), u represents the fluid velocity
(which is considered “averaged” in some sense), p the fluid pressure, n > 0 the
kinematic viscosity, f a body force, and uin and u0 are given. The equations (3,4)
represent the a-filter applied to u, where u is the resulting filtered variable and a > 0
is the filtering radius. This is the radius of the neighborhood where the filter extracts
information from the unresolved scales. The Lagrange multiplier l is necessary
to enforce a solenoidal u in non-periodic flows. The inlet and outlet sections are
denoted by Gin and Gout , while Gwall is the rest of the boundary. We note that the
correct boundary conditions for u on solid walls is unsettled in the LES community,
although the computational experience of the authors is that a no-slip condition
generally produces good results.

We also consider also the following generalized version of the Leray-a model,
proposed in [7]:

ut +eu ·—u+—p�nDu = f in W ⇥ (0,T ), (8)
— ·u = 0 in W ⇥ (0,T ), (9)

—l �a2— · (a(u)—eu)+eu = u in W ⇥ (0,T ), (10)
— ·eu = 0 in W ⇥ (0,T ), (11)

endowed with boundary conditions

u = eu = uin on Gin ⇥ (0,T ), (12)
u = eu = 0 on Gwall ⇥ (0,T ), (13)

(n—u� pI) ·n = (a2a(u)—eu�l I) ·n = 0 on Gout ⇥ (0,T ). (14)

The scalar function a(u), called the indicator function, is crucial for the success of
model (8-11), and satisfies:
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a(u)' 0 where the velocity u does not need regularization,
a(u)' 1 where the velocity u does need regularization,

so to detect the regions of the domain where regularization is needed. Notice that
the choice a(u) = 1 in (8-11) corresponds to system (3,4). In fact, in this way the
operator in the filter equations is linear and constant in time, however its effectivity
is rather limited, since it introduces the same amount of regularization in every re-
gion of the domain, hence causing overdiffusion in those region where the flow is
already smooth.

Different choices of a(·) have been proposed and compared in [7, 6, 30, 28].
Here, we focus on a class of deconvolution-based indicator functions:

a(u) = aD(u) = |u�D(F(u))|2 , (15)

where F is a linear filter (an invertible, self-adjoint, compact operator from a Hilbert
space to itself) and D is a bounded regularized approximation of F�1. A popular
choice for D is the Van Cittert deconvolution operator DN , defined as

DN =
N

Â
n=0

(I �F)n.

The evaluation of aD with D = DN (deconvolution of order N) requires then to apply
the filter F a total of N +1 times. Since F�1 is not bounded, in practice N is chosen
to be small, as the result of a trade-off between accuracy (for a regular solution) and
filtering (for a non-regular one). In this paper , we consider N = 0, corresponding to
D0 = I. Numerical tests for N = 1 are considered for instance in [2].

We select F to be the linear Helmholtz filter operator FH defined by

F = FH =
�
I �a2D

��1
.

It is possible to prove [12] that

u�DN(FH(u)) = (�1)N+1d 2N+2D N+1FN+1
H u.

Therefore, aDN (u) is close to zero in the regions of the domain where u is smooth.
Let us set û = FH(u). With D = D0 and F = FH , the indicator function (15) reads

aD0(u) = |u� û|2 . (16)

System (8-11) with indicator function given by (16) is what we have called pre-
viously Leray-a-NL.
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2.1 Sensitivity equation for Leray-a

Let us define
s :=

∂u
∂a

, r :=
∂u
∂a

, f :=
∂ p
∂a

, y :=
∂l
∂a

.

We develop the Leray-a sensitivity equation by differentiating model (1-4) with
respect to a:

st + r ·—u+u ·—s+—f �nDs = 0 in W ⇥ (0,T ), (17)
— · s = 0 in W ⇥ (0,T ), (18)

—y �a2Dr+ r� s = 2aDu in W ⇥ (0,T ), (19)
— · r = 0 in W ⇥ (0,T ). (20)

System (17-20) is supplemented with boundary conditions:

s = r = 0 on Gin [Gwall ⇥ (0,T ), (21)
(n—s�f I) ·n = 0 on Gout ⇥ (0,T ), (22)

(a2—r�yI) ·n = �2a—u on Gout ⇥ (0,T ), (23)

and initial condition s = 0 in W ⇥{0}. It is important to note that s 6= r, i.e. filtering
does not commute with differentiation in a . In addition, for both s and r we have
homogeneous Dirichlet conditions at the inlet section and on the walls.

Sensitivity system (17-20) is a new system of partial differential equations, and
thus it is important to consider its well-posedness. Its similarity to NSE and Leray
models limits our well-posedness study to the case of periodic boundary conditions.
Although this setting is typically not physically meaningful, we argue that a lack
of well posedness for (17-20) with periodic boundary conditions would prevent a
successful analysis for physical conditions such as (21-23).

The following result is promptly deduced from [11].

Lemma 1. Suppose a > 0, f 2 L2(0,T ;L2(W)d) and u0 2 H1(W)d. Then the Leray-
a model (1-4) equipped with periodic boundary conditions has a unique weak so-
lution with u 2 L•(0,T ;H1(W)d)\L2(0,T ;H2(W)d).

Using this lemma, we can prove that system (17-20) with periodic boundary condi-
tions is well-posed.

Theorem 1. Under the assumptions of Lemma 1, the system (17-20) has a unique
weak solution satisfying s, r 2 L•(0,T ;H1(W)d)\L2(0,T ;H2(W)d).

Proof. The proof of this theorem follows standard arguments, since the sensitivity
system is linear, and the smoothness assumptions of the data yield a sufficiently
smooth velocity u and filtered velocity u. ut
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2.2 Sensitivity equation for Leray-a-NL

We define:

s :=
∂u
∂a

, r :=
∂eu
∂a

, w :=
∂ û
∂a

, f :=
∂ p
∂a

, y :=
∂l
∂a

.

By differentiating the model (8-11) (with indicator function given by (16)) with
respect to a , we obtain:

st + r ·—u+eu ·—s+—f �nDs = 0 in W ⇥ (0,T ), (24)
— · s = 0 in W ⇥ (0,T ), (25)

—y �a2— · [(2(u� û) · (s�w))—eu+ |u� û|2—r]+ r� s

= 2a— · |u� û|2—eu in W ⇥ (0,T ), (26)
— · r = 0 in W ⇥ (0,T ), (27)

�a2Dw+w� s = 2aD û in W ⇥ (0,T ). (28)

The latter equation follows from the fact that û = FH(u)) û�a2D û = u. System
(24-28) is supplemented with boundary conditions

s = r = w = 0 on Gin [Gwall ⇥ (0,T ), (29)

(n—s�f I) ·n = (a2—w) ·n = 0 on Gout ⇥ (0,T ), (30)

(a2[(2(u� û) · (s�w))—eu+ |u� û|2—r]�yI) ·n
=�2a— · |u� û|2—eu on Gout ⇥ (0,T ), (31)

and initial condition s = 0 in W ⇥{0}.
For the Leray-a-NL sensitivity system (24-28), we are not able to establish a

well-posedness result. This is due to the fact that the well-posedness of Leray-a-
NL has not been proven yet. The major difficulty is the nonlinear filter, which would
not provide the extra regularity of eu from the regularity of u, since u� û could be
zero. Hence we would need to apply different techniques from the ones used for
the classical Leray-a model. We leave this study for a separate work. For now, we
conjecture that Leray-a-NL, and its associated sensitivity system is well-posed for
sufficiently smooth data.



On the sensitivity to the filtering radius in Leray models of incompressible flow 7

3 Discrete schemes for the Leray-a and Leray-a-NL models and
associated sensitivity systems

Let D t > 0, tn = nD t, with n = 0, ...,M and T = MD t. Moreover, we denote by yn

the approximation of a generic quantity y at the time tn. For the time discretization,
we adopt Backward Differentiation Formula of order 2 (BDF2, see e.g. [35]).

We assume Th to be a regular, conforming triangulation (tetrahedralization),
with maximum element diameter h. The velocity and pressure finite element spaces
(Xh,Qh)⇢ (H1(W)d ,L2(W)) are assumed to be LBB stable, i.e. it holds that

inf
qh2Qh

sup
vh2Xh

(— ·vh,qh)

k—vhkkqhk
� b ,

with b independent of h. Taylor-Hood elements (Pk,Pk�1) with k � 2 on triangles
and tetrahedra are popular examples of LBB stable pairs [9, 26]. The usual modi-
fications of these spaces can be made when non-homogeneous Dirichlet boundary
conditions are imposed on the velocity.

Finally, we introduce the skew-symmetric form of the nonlinear term in the NSE
is given by

b⇤(u,v,w) :=
1
2
(u ·—v,w)� 1

2
(u ·—w,v), with u,v,w 2 H1(W)d .

If — ·u = 0, then b⇤(u,v,w) = (u ·—v,w). An important property of this operator is
that b⇤(u,v,v) = 0 even if — ·u 6= 0, which can occur in discretizations.

For simplicity, when analyzing the discrete schemes we will consider wall-
bounded flows, i.e. homogeneous Dirichlet conditions on all the boundary. The anal-
yses that follow can be promptly adapted to fit the case of other boundary conditions.

Remark 1. The use of the skew-symmetric form of the nonlinearity is for analysis
purposes only, and in our computations we use the usual convective formulation. In
general, on sufficiently fine discretizations, very little difference between solutions
from these formulations is observed. In practice, particularly in the case of zero
traction outflow boundary conditions, the usual convective form is much more com-
monly used (since the skew-symmetric form requires a nonlinear boundary integral
be incorporated into the formulation).

3.1 Discrete scheme for Leray-a

Given T,D t,a > 0, f 2 L•(0,T ;H�1(W)d), and u0
h,u

1
h 2 Xh, we propose the fol-

lowing decoupled finite element discretization for the Leray-a model (1-4) with an
implicit-explicit (also called semi-implicit) treatment of the nonlinear term:
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Algorithm 3.1 For n= 1, . . . ,M�1, given un
h,u

n�1
h ,un

h,u
n�1
h 2Xh find un+1

h ,un+1
h 2

Xh and pn+1
h ,l n+1

h 2 Qh satisfying:

1
2D t

�
3un+1

h �4un
h +un�1

h ,vh
�
+b⇤(2un

h �un�1
h ,un+1

h ,vh)

�
�

pn+1
h ,— ·vh

�
+n

�
—un+1

h ,—vh
�
= (f(tn+1),vh), (32)

�
— ·un+1

h ,qh
�
= 0, (33)

�(lh,— · zh)+a2(—un+1
h ,—zh)+(un+1

h ,zh) = (un+1
h ,zh), (34)

(— ·un+1
h ,hh) = 0, (35)

for every vh,zh 2 Xh and qh,hh 2 ⇥Qh.

Algorithm 3.1 decouples the filtering from the mass/momentum system. It is a
straightforward extension of the analysis in [8] (for a linearized Crank-Nicolson
temporal discretization with inf-sup stable finite elements) to prove that Algorithm
3.1 is unconditionally stable with respect to the time step size:

kuM
h k2 +nD t

M

Â
n=2

k—un
hk2 C(u0

h,u
1
h,n�1, f,W). (36)

Moreover, it converges optimally (under the usual smoothness assumptions) to the
Leray-a solution in the following sense: if Taylor-Hood elements are used, then

ku(T )�uM
h k2 +nD t

M

Â
n=2

k—(u(tn)�un
h)k2  C(D t4 +h2k). (37)

We propose an analogous algorithm for the sensitivity system. At each time step,
after solving the Leray-a discrete system we approximate the solution of sensitiv-
ity equation (17-20) as follows. We take s0

h = s1
h = 0. For n = 1, . . . ,M � 1, given

sn
h,s

n�1
h ,rn

h,r
n�1
h 2 Xh we find sn+1

h ,rn+1
h 2 Xh and f n+1

h ,yn+1
h 2 Qh satisfying

1
2D t

(3sn+1
h �4sn

h + sn�1
h ,vh)+b⇤(2un

h �un�1
h ,sn+1

h ,vh)

�
�
f n+1

h ,— ·vh
�
+n

�
—sn+1

h ,—vh
�
=�b⇤(2rn

h � rn�1
h ,un+1

h ,vh), (38)
�
— · sn+1

h ,qh
�
= 0, (39)

� (yn+1
h ,— · zh)+a2 �—rn+1

h ,—zh
�
+
�
rn+1

h ,zh
�
= (sn+1

h ,zh)�2a(—un+1
h ,—zh),

(40)
�
— · rn+1

h ,hh
�
= 0, (41)

for all vh,zh 2 Xh and qh,hh 2 ⇥Qh.

Remark 2. The discrete sensitivity system (38-41) can be solved efficiently. In fact,
system (38,39) is decoupled from (40,41). Furthermore, at each time step the linear
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system arising from (38-41) has exactly the same matrix as system (32-35) allowing
for the reusing of the preconditioner.

The following lemma proves that the discrete sensitivity system for the Leray-a
model is stable with respect to the time step size under a mild restriction on the mesh
size relative to the time step.

Lemma 2. The discrete sensitivity system (38-41) with (Xh,Qh) = (Pk,Pk�1) is sta-
ble provided the mesh size h and time step D t are chosen to satisfy D t3  ch 
D t

1
2k�2 . Then we have

ksM
h k2 +nD t

M

Â
n=2

k—sn+1
h k2 C,

where, C depends only on the problem data.

Proof. We take vh = sn+1
h and qh = f n+1

h in (38-39) and get that

1
2D t

�
ksn+1

h k2 �ksn
hk2 +k2sn+1

h � sn
hk2 �k2sn

h � sn�1
h k2 +ksn+1

h �2sn
h + sn�1

h k2�

+nk—sn+1
h k2 =�b⇤(2rn

h � rn�1
h ,un+1

h ,sn+1
h ).

Let en+1
u := un+1

h �u(tn+1). The right hand side term is handled by first adding and
subtracting the true solution u(tn+1) to un+1

h , then using Holder’s inequality, and
Sobolev embeddings to obtain

|b⇤(2rn
h � rn�1

h ,un+1
h ,sn+1

h )|
 |b⇤(2rn

h � rn�1
h ,u(tn+1),sn+1

h )|+ |b⇤(2rn
h � rn�1

h ,en+1
u ,sn+1

h )|
Ck2rn

h � rn�1
h k

�
ku(tn+1)kL• +k—u(tn+1)kL3

�
k—sn+1

h k
+Ck2rn

h � rn�1
h k

�
ken+1

u kL• +k—en+1
u kL3

�
k—sn+1

h k. (42)

By the assumed smoothness of the true solution, the first term is bounded by

Ck2rn
h � rn�1

h k
�
ku(tn+1)kL• +k—u(tn+1)kL3

�
k—sn+1

h k

 n
2
k—sn+1

h k2 +Cn�1k2rn
h � rn�1

h k2.

Thanks to the generalized inverse inequality (see, e.g. [9]), and well-known interpo-
lation theory, we bound the second term as

Ck2rn
h � rn�1

h k
�
ken+1

u kL• +k—en+1
u kL3

�
k—sn+1

h k

 n
2
k—sn+1

h k2 +Cn�1h�1k—en+1
u k2k2rn

h � rn�1
h k2.

Combining the bounds and summing over n yields
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ksM
h k2 +k2sM

h � sM�1
h k2 +nD t

M

Â
n=2

k—sn+1
h k2

Cn�1D t
M�1

Â
n=2

k2rn
h � rn�1

h k2 �1+h�1k—en+1
u k2� . (43)

Next, we use equations (40,41) along with Cauchy-Schwarz and Young’s inequali-
ties to reveal

a2k—(2rn
h � rn�1

h )k2 +k2rn
h � rn�1

h k2  k2sn
h � sn�1

h k2 +4k—
�
2un

h �un�1
h

�
k2.

Combining this with (43) gives

ksM
h k2 +k2sM

h � sM�1
h k2 +nD t

M

Â
n=2

k—sn+1
h k2

Cn�1D t
M�1

Â
n=2

k2sn
h � sn�1

h k2 �1+h�1k—en+1
u k2�

+Cn�1D t
M�1

Â
n=2

k—
�
2un

h �un�1
h

�
k2 �1+h�1k—en+1

u k2� . (44)

Using the convergence result (37), we have that

h�1k—en+1
u k2 CD t�1h�1

⇣
D t4 +h2k

⌘
=C

✓
D t3

h
+

h2k�1

D t

◆
.

Inserting this bound into (44) and applying the discrete Gronwall inequality (see e.g.
[24]) gives the stated result. We note that there is no sM

h on the right hand side. Thus
there is no time step restriction associated with the discrete Gronwall inequality. ut

3.2 Discrete scheme for Leray-a-NL

Given T,D t,a > 0, f 2 L•(0,T ;H�1(W)d), and u0
h,u

1
h 2 Xh, we propose the follow-

ing decoupled finite element discretization for the Leray-a-NL model (8-11) with
indicator function given by (16) and an implicit-explicit treatment of the nonlinear
term:

Algorithm 3.2 For n = 1, . . . ,M�1 find un
h,eun

h, û
n
h 2 Xh and pn

h,l n
h 2 Qh satisfying:
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1
2D t

�
3un+1

h �4un
h +un�1

h ,vh
�
+b⇤(2eun

h �eun�1
h ,un+1

h ,vh)

�
�

pn+1
h ,— ·vh

�
+n

�
—un+1

h ,—vh
�
= (f(tn+1),vh), (45)

�
— ·un+1

h ,qh
�
= 0, (46)

�(lh,— · zh)+a2(|un+1
h � ûn+1

h |2—eun+1
h ,—zh)+(eun+1

h ,zh) = (un+1
h ,zh), (47)

(— ·eun+1
h ,hh) = 0, (48)

a2(—ûn+1
h ,—yh)+(ûn+1

h ,yh) = (un+1
h ,yh), (49)

for every vh,zh,yh 2 Xh and qh,hh 2 Qh.

Note that the ûn
h, eun

h velocities for n = 0,1 can be determined from equations (47-
49), since u0

h and u1
h are given.

Algorithm 3.2 efficiently decouples the mass/momentum system from the two
filters. First, system (45,46) is solved for un+1

h , pn+1
h , then equation (49) is solved

for ûn+1
h , and finally equations (47-48) are solved for eun+1

h ,l n+1
h .

Algorithm 3.2 was studied in [6] with the only difference that the |un+1
h � ûn+1

h |
in (47) term was not squared. This change does not affect the stability result proven
in [6], which states

kuM
h k2 +nD t

M

Â
n=2

k—un
hk2 C(u0

h,u
1
h,n�1, f ,W), (50)

kûn
hk  kun

hk, k—ûn
hk  k—un

hk, keun
hk  kun

hk for 0  n  M. (51)

It is known from [8, 7] that the scheme (45-49) converges to a smooth Navier-
Stokes solution uNSE as h, D t, and a tends to 0. If Taylor-Hood elements are used,
we have:

kuNSE(T )�uM
h k2 +nD t

M

Â
n=2

k—(uNSE(tn)�un
h)k2  C(D t4 +h2k +a4). (52)

At each time step, after solving the Leray-a-NL discrete system we approximate
the solution of sensitivity equation (24-27) as follows. We take s0

h = s1
h = 0. For

n = 1, . . . ,M � 1, given sn
h,s

n�1
h ,rn

h,r
n�1
h 2 Xh we find sn+1

h , ,rn+1
h ,wn+1

h 2 Xh and
f n+1

h ,yn+1
h 2 Qh satisfying:
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1
2D t

(3sn+1
h �4sn

h + sn�1
h ,vh)+b⇤(2eun

h �eun�1
h ,sn+1

h ,vh)�
�
f n+1

h ,— ·vh
�

+n
�
—sn+1

h ,—vh
�
=�b⇤(2rn

h � rn�1
h ,un+1

h ,vh), (53)
�
— · sn+1

h ,qh
�
= 0, (54)

a2 �|un+1
h � ûn+1

h |2—rn+1
h ,—zh

�
� (yn+1

h ,— · zh)+
�
rn+1

h ,zh
�

=�2a2 ��(un+1
h � ûn+1

h ) · (sn+1
h �wn+1

h )
�

—eun+1
h ,—zh

�

+(sn+1
h ,zh)�2a(|un+1

h � ûn+1
h |2—eun+1

h ,—zh), (55)
�
— · rn+1

h ,hh
�
= 0, (56)

a2(—wn+1
h ,—yh)+(wn+1

h ,yh) = (sn+1
h ,yh), (57)

for all vh,zh,yh 2 Xh and qh,hh 2 Qh.
This scheme can also be efficiently computed. In fact, system (53,54) is com-

puted first, followed by system (57) and (55,56). Moreover, the matrices for the
linear systems are exactly the same as for (45-49).

Theorem 2. The discrete sensitivity scheme is stable (53-57): for all D t > 0 we have

ksM
h k2 +nD t

M

Â
n=1

k—sn
hk2 C(u,n�1,T ), (58)

and for any n

2a2k—wn
hk2 +kwn

hk2  ksn
hk2, krn

hk  ksn
hk.

Proof. By taking vh = sn+1
h in (53) and qh = f n+1

h in (54) along with Holder’s in-
equality and Sobolev embedding theorems, we get

1
4D t

�
ksn+1

h k2 �ksn
hk2 +k2sn+1

h � sn
hk2 �k2sn

h � sn�1
h k2 +ksn+1

h �2sn
h + sn�1

h k2�

+nk—sn+1
h k2Ck2rn

h � rn�1
h k(k—un+1

h kL3 +kun+1
h kL•)k—sn+1

h k. (59)

Young’s inequality and the assumption of uh converging sufficiently fast yield:

1
2D t

(ksn+1
h k2 �ksn

hk2 +k2sn+1
h � sn

hk2 �k2sn
h � sn�1

h k2 +ksn+1
h �2sn

h + sn�1
h k2)

+nk—sn+1
h k2Cn�1k2rn

h � rn�1
h k2. (60)

Next, taking yh = wn+1
h in (57) and zh = rn+1

h in (55) provides

2a2k—wn+1
h k2 +kwn+1

h k2  ksn+1
h k2, (61)

and
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a2k|un+1
h � ûn+1

h |—rn+1
h k2 +krn+1

h k2 = (sn+1
h ,rn+1

h )

�2a2 ��(un+1
h � ûn+1

h ) · (sn+1
h �wn+1

h )
�

—eun+1
h ,—rn+1

h
�

�2a(|un+1
h � ûn+1

h |2—eun+1
h ,—rn+1

h ).

Cauchy-Schwarz and Young’s inequalities applied to each term on the right-hand
side give the estimate

a2k|un+1
h � ûn+1

h |—rn+1
h k2 +krn+1

h k2 
ksn+1

h k2 +8a2k|sn+1
h �wn+1

h |—eun+1
h k2 +8k|un+1

h � ûn+1
h |—eun+1

h k2.

Assuming uh converges and using (61), we have that

krn+1
h k2  ksn+1

h k2 +C+Ca2k|sn+1
h �wn+1

h k2 C(1+ksn+1
h k2). (62)

Inequalities (62) in (60) yield:

1
2D t

(ksn+1
h k2 �ksn

hk2 +k2sn+1
h � sn

hk2 �k2sn
h � sn�1

h k2 +ksn+1
h �2sn

h + sn�1
h k2)

+nk—sn+1
h k2 Cn�1 �ksn

hk2 +ksn�1
h k2� . (63)

To complete the proof we sum over n and apply Gronwall’s inequality. There is no
time step restriction since the power of sh on the right hand side is less than n+ 1
[24]. ut

4 Numerical testing

In this section we compute solutions to the Leray-a and Leray-a-NL models, and
associated sensitivities for two test problems. For both tests, we use Taylor-Hood
elements, i.e. P2 elements for velocities and relative sensitivities, and P1 elements
for pressures and Lagrange multipliers. The computations were performed using
Freefem software [22].

4.1 Channel flow past a forward-backward step

We consider the two dimensional channel flow past a forward-backward step. The
domain is a 40⇥ 10 rectangle, with a 1⇥ 1 step placed five units in. See Fig. 1.
We impose boundary conditions (5-7) for the Leray-a model and (12-14) for the
Leray-a-NL model with uin = (y(10� y)/25,0)T . The boundary conditions for the
sensitivity systems are as reported in Sec. 2. We set f = 0 and n = 1/600. The
correct physical behavior for a NSE solution is a smooth velocity profile, with eddies
forming and detaching behind the step; see, e.g., [27, 20].
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Fig. 1 Mesh used for the computations of the channel flow past a forward-backward step.

We consider a Delaunay triangulated mesh (shown in Fig. 1), with a total of 2,575
total degrees of freedom. The time step is set to D t = 0.1. We let the simulations run
until T = 40. We show in Fig. 2 the streamlines over velocity magnitude contours
given by the Leray-a model with a = 0.25 and a = 0.1 at time T = 40. We observe
the solutions are similar away from the step, but behind the step they exhibit very
different behavior: for a = 0.25 there is no eddy separation, while for a = 0.1 the
correct transient behavior of eddy shedding is predicted. This sensitivity to a near
the step and lack of sensitivity away from the step are predicted in the plot of the
velocity sensitivity magnitude |sh| for a = 0.25 reported in Fig. 3.
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Fig. 2 Streamlines over velocity magnitude contours given by the Leray-a model with a = 0.25
(left) and a = 0.1 (right) at time T = 40.
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Fig. 3 Velocity sensitivity magnitude |sh| for the Leray-a model with a = 0.25 at time T = 40.

The same test was run with the Leray-a-NL model. Fig. 4 displays the stream-
lines over velocity magnitude contours given by the Leray-a-NL model with a =
0.25 and a = 0.1 at time T = 40. Here we observe that both solutions correctly
predict eddy shedding behind the step. Moreover, we observe that the velocity sen-
sitivity magnitude for a = 0.25 shown in Fig. 5 is quite small. In fact even though
|sh| is largest behind the step, just as in the Leray-a case, for the nonlinear model
the magnitude of sensitivity is almost 2 orders of magnitude smaller: at T = 40
kshkL• ⇡ 0.01 for the Leray-a-NL model, while kshkL• ⇡ 0.80 for the Leray-a
model. Hence the Leray-a-NL correctly predicts the physical behavior with both
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choices of a , and is much less sensitive to the parameter choice than the classical
Leray-a model. Fig. 5 reports also the indicator function a(uh) = |uh � ûh|2 for the
Leray-a-NL model with a = 0.25 at time T = 40. We see that the indicator function
takes larger values in the region behind the step, as expected.
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Fig. 4 Streamlines over velocity magnitude contours given by the Leray-a-NL model with a =
0.25 (left) and a = 0.1 (right) at time T = 40.
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Fig. 5 Velocity sensitivity magnitude |sh| (left) and indicator function a(uh) = |uh � ûh|2 (right)
for the Leray-a-NL model with a = 0.25 at time T = 40.

4.2 Channel flow with a contraction and two outlets

The second numerical test is taken from Heywood et. al. [25]: channel flow with a
contraction, one inlet on the left side, and outlets at the top and right. We impose
boundary conditions (5-7) for the Leray-a model and (12-14) for the Leray-a-NL
model with uin = (4y(1� y),0)T . The boundary conditions for the sensitivity sys-
tems are as reported in Sec. 2. We set f = 0, n = 0.001, and u0 = 0. We let the sim-
ulations run until T = 4. The Navier-Stokes velocity magnitude on a fully resolved
mesh is shown in Fig. 7 for T = 4. This solution was obtained using a fully implicit
Crank-Nicolson temporal discretization with time step of D t = 0.005 and (P3,P2)
grad-div stabilized Taylor-Hood elements on the triangular mesh with 260,378 total
degrees of freedom.

We consider a coarse Delaunay generated triangulation (shown in Fig. 6), with
a total of 24,553 total degrees of freedom, that is one order of magnitude less than
a fully resolved mesh. Fig. 8 shows the velocity magnitude contours given by the
Leray-a model with a = 0.16 and a = 0.14 at time T = 4. First of all, we note these
solutions do not match well the solution given by DNS shown in Fig. 7. Comparing
to each other, the solutions for a = 0.16 and a = 0.14 in Fig. 8 appear similar on
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Fig. 6 Mesh used for the computations of the channel flow with a contraction and two outlets.
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Fig. 7 Velocity magnitude contours given by DNS (NSE on a fully resolved mesh) at time T = 4.

the left half of the channel, but on the right hand side the ‘jet’ for a=0.14 extends
slightly farther. Also there are discrepancies near the top outlet; see zoomed-in views
in Fig. 8. These differences are predicted by the velocity sensitivity solution for
a =0.16 reported in Fig. 9.
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Fig. 8 Velocity magnitude contours given by the Leray-a model with a = 0.16 (top left) and
a = 0.14 (top right) at time T = 4 and respective zoomed in views (bottom).

 

 

0

5

10

15

Fig. 9 Velocity sensitivity magnitude |sh| for the Leray-a model with a = 0.16 at time T = 4 s.

The same test was run with Leray-a-NL. Fig. 10 displays the velocity magnitude
contours given by the Leray-a-NL model with a = 0.16 and a = 0.14 at time T = 4.
These solutions match each other well and match the general pattern of the solution
given by DNS shown in Fig. 7. Examining the sensitivity solution for a = 0.16 in
Fig. 11 we see greater sensitivity near the top outlet. However, the velocity sensitiv-
ity magnitude |sh| is smaller than for the classical Leray-a model; compare Fig. 11
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with Fig. 9. Also for this second test, the Leray-a-NL correctly predicts the phys-
ical behavior with both choices of a , and is less sensitive to the parameter choice
than the classical Leray-a model. Finally, Fig. 11 reports also the indicator function
a(uh) = |uh � ûh|2 for the Leray-a-NL model with a = 0.16 at time T = 4. Fig. 11
shows that it is a suitable indicator function since it correctly selects the regions of
the domain where the velocity does need regularization.

 

 

0.5

1

1.5

2

2.5

Leray-a-NL, a = 0.16

 

 

0.5

1

1.5

2

2.5

Leray-a-NL, a = 0.14

Fig. 10 Velocity magnitude contours given by the Leray-a-NL model with a = 0.16 (left) and
a = 0.14 (right) at time T = 4.
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Fig. 11 Velocity sensitivity magnitude |sh| (left) and indicator function a(uh) = |uh � ûh|2 (right)
for the Leray-a-NL model with a = 0.16 at time T = 4.

5 Conclusions

In this paper, we applied the sensitivity equation method to study the sensitiv-
ity to the filtering radius a of the classical Leray-a and a Leray model with a
deconvolution-based indicator function, called Leray-a-NL. We proposed efficient
and stable numerical schemes for the approximation of both models and their re-
spective sensitivity systems, and we tested them on two benchmark problems. We
showed that the velocity sensitivity magnitude correctly identifies the region of the
domain where the velocity is sensitive to variations of a . Moreover, we showed that
the Leray-a-NL model correctly predicts the physical solution for different values
of a , and is much less sensitive to the parameter choice than the classical Leray-a
model.

This is a preliminary work aiming at assessing numerical schemes for the sensi-
tivity equations. Clearly, we expect to use the sensitivity results to perform specific
strategies for the selection of the filter radius. This will be based on the following
steps: (1) Compute the LES solution and the sensitivity with a conservative choice
of the radius (a =a0 “large”); (2) Rapidly recompute the solution for smaller values
of a according to the expansion
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u(a)⇡ u(a0)+ s(a0)(a �a0).

The definition of the appropriate criteria for the identification of the most appro-
priate radius is expected to be largely problem-dependent and will be subject of
forthcoming works.
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