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Abstract

We study a nonlinear fluid-structure interaction (FSI) problem between an incompressible, viscous
fluid and a composite elastic structure consisting of two layers: a thin layer (membrane) in direct
contact with the fluid, and a thick layer (3D linearly elastic structure) sitting on top of the thin
layer. The coupling between the fluid and structure, and the coupling between the two structures
is achieved via the kinematic and dynamic coupling conditions modeling no-slip and balance of
forces, respectively. The coupling is evaluated at the moving fluid-structure interface with mass,
i.e., the thin structure. To solve this nonlinear moving-boundary problem in 3D, a monolithic,
fully implicit method was developed, and combined with an Arbitrary Lagrangian-Eulerian (ALE)
approach to deal with the motion of the fluid domain. To the best of our knowledge, this is the
first monolithic solver for this class of nonlinear FSI problems.

This work was motivated by FSI between blood flow and vascular tissue. We considered three
examples mimicking (1) a healthy artery, (2) an atherosclerotic artery with atheroma, and (3) an
atherosclerotic artery with atheroma treated with a vascular device called a stent. We show the
feasibility of our model to provide detailed information about intramural longitudinal structure
motion and intramural strain distribution, which could be used in conjunction with ultrasound
B-mode scans as a predictive tool for an early detection of atherosclerosis [58].

Keywords: Fluid-structure interaction; Composite structure; Hemodynamics; Atheroma; Stent.

1. Introduction

This work is motivated by a study of fluid-structure interaction (FSI) between blood flow and
vascular tissue in normal and diseased states. Vascular tissue is a composite structure made of
several di↵erent layers, each with di↵erent mechanical characteristics and thickness. So far there
have been no realistic 3D FSI simulations that take into account the multi-layered structure of
arterial walls. In this paper we present a monolithic computational model of FSI where the structure
consists of two layers: a thin layer in direct contact with the fluid, and a thick layer sitting on top
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of the thin layer. The thin layer is modeled using the membrane model proposed in [24, 23], while
the thick layer is modeled using the equations of 3D linear elasticity. The Navier-Stokes equations
for an incompressible, viscous fluid are used to model the fluid flow. The fluid and structure are
coupled via two coupling conditions: the kinematic coupling condition describing continuity of
velocities (no-slip), and the dynamic coupling condition describing the balance of contact forces.
The coupling is evaluated at the deformed fluid-structure interface, which, in this problem, is the
thin structure with mass. The coupling between the thin and thick structure is modeled via the
kinematic and dynamic coupling conditions as well. The kinematic coupling condition describes
continuity of displacement (glued structures) and the dynamic coupling condition describes the
balance of contact forces, as before. Thus, across the thin fluid-structure interface with mass,
the dynamic coupling condition states that the elastodynamics of the thin structure is driven
by the jump in the normal stress coming from the fluid on one side, and the thick structure on
the other. Di↵erent coupling conditions can be employed to model di↵erent physical/physiological
phenomena.

In addition to the composite structure described above, in this work we also vary the thick
structure thickness and elasticity properties to capture the presence of atheroma, a fatty plaque
tissue, associated with atherosclerosis. The plaque, which is typically located within the arterial wall
in a layer called tunica intima, leads to restriction in circulation, called stenosis. A cardiovascular
procedure called angioplasty with stenting is often used to treat stenotic lesions. A stent, which is
a metallic mesh-like tube, is anchored to the arterial wall during angioplasty to prop the stenotic
arteries open. In this manuscript a stent is modeled by a change in the elastic properties of the
thin structural layer where the stent struts are located. This gives rise to a net-like geometry
in the thin structural layer determined by the location of the stent struts. The elastodynamics
of this mesh-like structure within the thin structural layer is coupled to the elastodynamics of
atheroma and blood flow via the kinematic and dynamic coupling conditions. Our approach to
simulating FSI with stents is di↵erent from the classical engineering approaches, where a stent is
modeled as a single 3D elastic body [7, 19, 26, 36, 41, 42, 44, 45, 55]. Simulating slender stent struts
using 3D approaches is computationally very expensive typically producing simulation results with
poor accuracy due to the insu�cient mesh refinement imposed by the large memory requirements
associated with the use of 3D meshes to approximate slender stent struts. The approach presented
in this manuscript gets around these di�culties, and we show that it provides detailed information
about intramural strain distribution and intramural displacements during systolic and diastolic
parts of the cardiac cycle, which are adversely a↵ected by the presence of a stent.

The development of numerical solvers for fluid-structure interaction problems involving incom-
pressible fluids has been a very active area of research for the past 35 years [50, 49, 21, 25, 39,
28, 27, 30, 29, 18, 33, 31, 37, 38, 52, 51, 2, 56, 20, 22, 34, 35, 13, 24, 9]. Among the most pop-
ular techniques are the Immersed Boundary Method [50, 49, 21, 25, 39, 28, 27, 30, 29] and the
Arbitrary Lagrangian Eulerian (ALE) method [18, 33, 31, 37, 38, 52, 51]. We further mention
the Fictitious Domain Method in combination with the mortar element method or ALE approach
[2, 56], and the methods recently proposed for the use in the blood flow application such as the
Lattice Boltzmann method [20, 22, 34, 35], the Level Set Method [13] and the Coupled Momentum
Method [24]. In relation to the FSI simulations of arterial flows, the FSI models almost exclusively
assume single-layered structures that are homogeneous and isotropic to describe the mechanical
properties of arterial walls, except for the recent works [15] where anisotropic polyconvex hyper-
elastic and anisotropic viscoelastic material models at finite strains were considered. Two types
of approaches have been developed to deal with this class of multi-physics problems: a monolithic
approach and a partitioned approach. In monolithic approaches the entire coupled system is solved
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as one monolithic system, while in partitioned approaches the coupled problem is partitioned into
sub-problems, typically following the di↵erent physics in the problem, i.e., the fluid and structure
sub-problems. The coupled problem is solved by iterating between the sub-problems. The first FSI
model with multi-layered structures, motivated by the blood flow application, appeared in [47, 9],
where a partitioned scheme was designed to solve the problem [9] and to prove the existence of
a weak solution to the underling FSI problem with a two-layered structure [47]. However, parti-
tioned algorithms introduce a splitting error, and may su↵er from stability issues associated with
problems in hemodynamics, which are known to su↵er from the so called added mass e↵ect [11].

To solve the coupled FSI problems with multi-layered structures studied in this manuscript
we use a monolithic, fully implicit method, with an Arbitray Lagrangian-Eulerian (ALE) ap-
proach employed to deal with the motion of the fluid domain [18]. Finite elements are used
for spatial discretization, and finite di↵erences for discretization in time. The resulting nonlin-
ear monolithic system is solved using Newton’s iterations, where the resulting linear system for
the Jacobian is solved by GMRES with FaCSI preconditioner [16]. This method is second order
accurate both in space and in time. We utilized an Open-Source library of parallel solvers called
LifeV (http://www.lifev.org/home) as a computational platform within which our solver was
developed. This enabled us to use high resolution meshes for the simulations, totaling more than
10 million degrees of freedom, which were run on supercomputer machines at the Swiss National
Supercomputing Center (CSCS) and at University of Houston’s Center for Advanced Computing
and Data Systems (CACDS).

The approach presented here contrasts the approaches presented in [47, 9] in that: (1) the solver
developed here is monolithic while the solver developed in [9] is partitioned; (2) the numerical
method developed here is 2nd-order accurate in time, while the method developed in [9] is at most
1st-order accurate in time; (3) the thin structure model in the present paper is the membrane
model proposed in [24, 23], while the thin structure model used in [47, 9] is a cylindrical Koiter
shell/membrane model; (4) the numerical examples presented here are all set in 3D, while the
numerical examples presented in [9] are set in 2D; (5) the numerical examples presented here
include not only the 3D version of the straight two-layered tube test case studied in [9], but also
an example of FSI simulation of a stenosed artery with atherosclerotic plaque (atheroma) located
with the vascular wall, and an example of FSI simulation of a stenosed artery treated with a stent.

Our results show several interesting properties of FSI solutions to this class of problems. First,
we confirm the findings presented in [47, 9] that the presence of a thin fluid-structure interface
with mass smooths-out solutions of FSI problems. As pointed out in [47, 9] this is due to the
fluid-structure interface inertia. See Section 4.1. As a consequence the pressure wave amplitude is
dampened when compared to the pressure wave in “standard” FSI simulations in hemodynamics
where arterial tissue is modeled using equations of 3D elasticity. We also found that the longitudinal
wave propagation speed is increased when the thin fluid-structure interface with mass is present.
The thin fluid-structure interface with mass in our model corresponds to the internal elastic laminae
covered with endothelial cells comprising the inner-most layer known as tunica intima in muscular
arteries. Our results implicate that the presence of this inner-most layer in muscular arteries may
be responsible for damping e↵ects in arterial pressure wave propagation, and an increase in the
pressure wave propagation velocity, not captured by classical FSI models.

The results in Sections 4.2 and 4.3 show the feasibility of our model to provide novel flow
information and detailed information about intramural strains in atherosclerotic arteries, and in
arteries treated with stents. High intramural strains have been recently indicated as a risk factor of
early-stage atherosclerosis in carotid arteries [58]. We show in Sections 4.2 and 4.3 that our simula-
tions may be used to give a deeper insight into the details of the distribution of intramural strain.
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Intramural strains can be detected in vivo using non-invasive, ultrasound B-mode sequences [58].
They have been recently implicated as a risk factors of early-stage atherosclerosis [58]. The model
presented in this manuscript could provide supplemental detailed information about intramural
longitudinal tissue motion and intramural stain distribution, which could be used in conjunction
with ultrasound B-mode scans as a predictive tool for an early detection of atherosclerosis [58].

2. Problem definition

2.1. Mathematical model

We consider a fluid-structure interaction problem between an incompressible, viscous fluid and
an elastic structure composed of several di↵erent layers. The fluid domain, which is not known
a priori, is a function of time, and is denoted by ⌦f (t) ⇢ R3. We assume that the reference
fluid domain ⌦̂f is a cylinder of length L, not necessarily symmetric. The lateral boundary of the
cylinder is assumed to be elastic and consisting of several layers: a thin layer which is in direct
contact with the fluid, and a thick layer. See Figure 1. The location of the deformed thick structural
layer is denoted by ⌦s(t), with the reference configuration ⌦̂s. The structure equations are given in
Lagrangian coordinates, i.e., they are defined on the reference domain ⌦̂s. The thin layer, denoted
by �(t), which sits between the fluid and the thick elastic layer, coincides with the fluid structure
interface: �(t) = @⌦f (t)\@⌦s(t), with the reference configuration �̂ = ⌦̂f \ ⌦̂s. The thin structure
elastodynamics equations are defined on �̂.

Figure 1: Computational domain: initial configuration (left) and deformed configuration (right).

The flow in ⌦f (t) is governed by the Navier-Stokes equations for an incompressible, viscous
fluid:

⇢
f

(@
t

u+ (u ·r)u)�r · � = 0 in ⌦f (t), (1)

r · u = 0 in ⌦f (t), (2)

for t 2 [0, T ], where ⇢
f

is the fluid density, u is the fluid velocity and � the Cauchy stress tensor.
For Newtonian fluids � has the following expression

�(u, p) = �pI+ 2µ
f

✏(u),

where p is the pressure, µ
f

is the fluid dynamic viscosity and ✏(u) = (ru+(ru)T )/2 is the strain
rate tensor. The fluid is driven by the inlet and outlet dynamic pressure data:

p+
⇢
f

2
|u|2 = p

in/out

(t) on �f

in/out

⇥ (0, T ), (3)

u⇥ e
z

= 0 on �f

in/out

⇥ (0, T ). (4)
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Boundary conditions (3)-(4) will be used for the energy estimate in Sec. 2.5. In our numerical
simulations, we will consider the normal stress data:

�nf

in

= �p
in

(t)nf

in

on �f

in

⇥ (0, T ), (5)

�nf

out

= �p
out

(t)nf

in

on �f

out

⇥ (0, T ), (6)

where nf

in

and nf

out

are the outward normals to the inlet and outlet fluid boundaries, �f

in

and �f

out

,
respectively. These boundary conditions are common in blood flow modeling [3, 43, 48].

The structure equations are defined in Lagrangian coordinates in terms of the displacement field
d of the thick structure from its given material reference configuration ⌦̂s, and, for the thin struc-
ture, in terms of the displacement ⌘ from its reference configuration �̂. The equations governing
the elastodynamics of the thick structure are given by the equations of 3D linear elasticity:

⇢
s

@
tt

d�r ·⌃(d) = 0 in ⌦̂s ⇥ (t0, T ), (7)

where ⇢
s

is the density of the thick structure, and ⌃(d) is the first Piola-Kirchho↵ stress tensor. We
assume that the structure is homogeneous and isotropic. Additionally, we assume that the strain
is small. Thus, we have:

⌃(d) = 2µ
s

✏(d) + �
s

(r · d)I. (8)

Here, ✏(d) = (rd+ (rd)T )/2 is the strain rate tensor, µ
s

and �
s

are the Lamé constants, which
are related to Young’s modulus E

s

and the Poisson’s ratio ⌫
s

via:

µ
s

=
E

s

2(1 + ⌫
s

)
, �

s

=
E

s

⌫
s

(1 + ⌫
s

)(1� 2⌫
s

)
.

We assume that the structure is clamped at the inlet and outlet sections �s

in

and �s

out

, and that
the normal stress at the external structure boundary �s

ext

is equal to zero:

d = 0 on �s

in/out

, (9)

⌃(d)ns

ext

= 0 on �s

ext

, (10)

where ns

ext

denotes the outward normal to �s

ext

.
The thin structure elastodynamics is described by a model for a linearly elastic, isotropic

membrane, proposed in [24, 23]. In weak form, the model is given by the following:

⇢
m

h

Z

�̂
@
tt

⌘ · ⇣d�+ h

Z

�̂
⇧

�

(⌘) : r
�

⇣d� =

Z

�̂
⇧

�

(⌘)ns · ⇣d� 8⇣ 2 V m, (11)

where the test space V m for the clamped membrane is defined by:

V m = {⇣ 2 (H1(⌦̂s))3| ⇣|�̂ 2 (H1(�̂))3, ⇣ = 0 on �s

in/out

}. (12)

Here ⌘ = (⌘
x

, ⌘
y

, ⌘
z

) denotes the structure displacement, ⇢
m

denotes the structure density, h
denotes the structure thickness, ns is the outward normal to the solid domain, and

⇧
�

(⌘) =
E

m

1 + ⌫2
m

✏
�

(⌘) +
E

m

⌫
m

1� ⌫2
m

r
�

· ⌘, (13)

where ✏
�

(⌘) = (r
�

⌘ + rT

�

⌘)/2,r
�

· ⌘ = Trace(✏
�

(⌘)) and r
�

(·) denotes the surface gradient.
Practically, the surface gradient can be computed as [12, 8]

r
�

(⌘) = r⌘(I � ns ⌦ ns),
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where the symbol ⌦ denotes the outer product and I is the identity operator. The coe�cients
E

m

and ⌫
m

are the membrane Young’s modulus and the Poisson’s ratio, respectively. This model
was obtained from three-dimensional linear elasticity after assuming a thin-walled structure, a
homogeneous distribution of radial stresses, and negligible bending terms. Comparisons between
this model, other reduced order models and a full 3D model for fluid-structure interaction problems
was investigated in [12]. The advantages of this model compared to other reduced models is that
it can be easily coupled to full 3D elasticity since it captures the displacement in all three spatial
directions through a weak form which is similar to full 3D elasticity.

Initially, the fluid, the thin structure and the thick structure are assumed to be at rest, with
zero displacement from the reference configuration:

u = 0, d = 0, ⌘ = 0, @
t

d = 0, @
t

⌘ = 0, at t = 0. (14)

2.2. The ALE mapping
In order to describe the evolution of the fluid domain, we adopt an Arbitrary Lagrangian-

Eulerian (ALE) approach [32]. Let ⌦̂f ⇢ R3 be a fixed reference domain. We consider a smooth
mapping

A : [0, T ]⇥ ⌦̂f ! R3,

A(t, ⌦̂f ) = ⌦f (t), 8t 2 [0, T ].

For each time instant t 2 [0, T ], A is assumed to be a homeomorphism. The domain velocity w is
defined as

w(t, ·) = dA
dt

(t,A(t, ·)�1).

For any su�ciently smooth function F : [0, T ]⇥ R3 ! R, we may define the ALE time derivative
of F as

@
t

F
�

�

�

x̂

= D
t

F (t,A(t, x̂)) = @
t

F (t,x) +w(t,x) ·rF (t,x), for x = A(t, x̂), x̂ 2 ⌦̂f ,

where D
t

denotes the total derivative with respect to time. With these definitions, we can write
the incompressible Navier-Stokes equations in the ALE formulation as follows:

⇢
f

@
t

u
�

�

�

x̂

+ ⇢
f

(u�w) ·ru�r · � = 0 in ⌦f (t), (15)

r · u = 0 in ⌦f (t), (16)

for t 2 [0, T ]. Since the time derivative is now computed on the reference domain, the ALE formu-
lation is well-suited for the time discretization.

2.3. The coupling conditions
The fluid and the composite structure are coupled via the kinematic and dynamic boundary

conditions [47]:

• Kinematic coupling conditions describe continuity of velocity at the fluid-structure in-
terface (no-slip condition)

u �A = @
t

⌘ on �̂⇥ (0, T ), (17)

and continuity of the displacement (glued structures)

⌘ = d on �̂⇥ (0, T ); (18)
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• Dynamic coupling condition describes the second Newton’s law of motion of the fluid-
structure interface, which is loaded by the jump in the normal stress exerted by the fluid and
the composite structure. The condition reads:

J d�nf |�(t) +⌃ns +⇧
�

(⌘)ns = 0 on �̂⇥ (0, T ), (19)

where J denotes the Jacobian of the transformation from Eulerian to Lagrangian coordi-

nates, and d�nf |�(t) denotes the normal fluid stress at the deformed fluid-structure interface,
evaluated with respect to the reference configuration. Vector nf is the outward unit normal
to the deformed fluid domain.

Since equation (19) states that the load acting on the thin structure is equal to the jump in the
normal stress across it, the dynamic coupling condition (19) defines the dynamics of the thin
fluid-structure interface with mass, and can be written as:

⇢
m

h

Z

�̂
@
tt

⌘ · ⇣d�+ h

Z

�̂
⇧

�

(⌘) : r
�

⇣d� = �
Z

�̂

⇣

J d�nf |�(t) +⌃ns

⌘

· ⇣d� 8⇣ 2 V m.

2.4. The weak formulation of the coupled problem

To write the variational formulation of problem (1)-(2), let us define the following spaces for
any given t 2 [0, T ):

V f (t) =
n

v : ⌦
f

(t) ! R2, v = v̂ � (A)�1, v̂ 2 (H1(⌦̂
f

))2
o

,

Q(t) =
n

q : ⌦
f

(t) ! R, q = q̂ � (A)�1, q̂ 2 L2(⌦̂
f

)
o

,

and the following bilinear forms:

mf (u,v) =

Z

⌦(t)
⇢
f

(u · v) d⌦,

af (u,v) =

Z

⌦(t)
2µ

f

(✏(u) : ✏(v)) d⌦,

c(u;v,w) =

Z

⌦(t)
⇢
f

((u ·r)v ·w) d⌦,

b(p,v) = �
Z

⌦(t)
pr · v d⌦.

Here A : B denotes the scalar product A : B := Tr(ABT ), A,B 2 M3(R). The variational
formulation of the fluid problem (1)-(2) reads as follows: given t 2 (0, T ], find (u, p) 2 V f (t)⇥Q(t)
such that 8(v, q) 2 V f (t)⇥Q(t) the following holds:

mf (@
t

u,v) + c(u;u,v) + af (u,v) + b(p,v)� b(q,u) =

Z

@⌦f (t)
�nf · vdS. (20)

To write the weak formulation of the thick structure problem (7), we introduce the following
test function space

V s = {' 2 (H1(⌦̂s))3| ' = 0 on �s

in

[ �s

out

}, (21)
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and bilinear forms

ms(d,') =

Z

⌦̂s

⇢
s

(d ·') d⌦̂,

as(d,') =

Z

⌦̂
2µ

s

(✏(d) : ✏(')) d⌦̂+

Z

⌦̂
�
s

(r · d)(r ·')d⌦̂.

The weak formulation of problem (7) reads as follows: Find d 2 V s such that for all ' 2 V s we
have

ms(@
tt

d,') + as(d,') =

Z

⌦̂s

⌃ns ·'d�. (22)

The weak formulation for the membrane problem is already given by (11). Here, we introduce
the notation for the bilinear forms:

mm(⌘, ⇣) =

Z

�̂
⇢
m

h (⌘ · ⇣) d�,

am(⌘, ⇣) = h

Z

�̂
⇧

�

(⌘) : r
�

⇣d�,

and use them in the weak formulation of the coupled problem.
To obtain the weak formulation of the coupled problem, we introduce the following test space

W f (t) = {(v,', ⇣) 2 V f (t)⇥ V s ⇥ V m| v �A = ' = ⇣ on �̂⇥ (0, T )}, (23)

which incorporates the kinematic coupling conditions (17) and (18). The weak formulation of
the coupled problem is then obtained by adding equations (20), (22) and (11), and by taking
into account the dynamic coupling condition (19) and boundary conditions (3)-(4). The resulting
weak formulation of the coupled problem is given as follows: given t 2 (0, T ], find (u,d,⌘, p) 2
V f (t)⇥ V s ⇥ V m ⇥Q(t) with u �A = @

t

d = @
t

⌘ on �̂, such that for all (v,', ⇣, q) 2 W (t)⇥Q(t)
the following holds:

mf (@
t

u,v) + c(u;u,v) + af (u,v) + b(p,v)� b(q,u) +ms(@
tt

d,') + as(d,') +mm(@
tt

⌘, ⇣)

+am(⌘, ⇣) = �
Z

�f

in

⇣

p
in

(t)� ⇢
f

2
|u|2

⌘

v · nfd��
Z

�f

out

⇣

p
out

(t)� ⇢
f

2
|u|2

⌘

v · nfd�. (24)

2.5. Energy estimate
To derive an energy estimate, we replace the test functions (v,', ⇣, q) in (24) by (u, @

t

d, @
t

⌘, p),
where (u,d,⌘, p) is a weak solution. After a series of manipulations detailed in [46, 47], and an
application of Korn’s and trace inequalities, one can show that the following estimate holds:

d

dt
E(t) +D(t)  C

⇣

kp
in

(t)k2
L

2(�f

in

)
+ kp

out

(t)k2
L

2(�f

out

)

⌘

, (25)

where E(t) denotes the sum of the kinetic and the elastic energy of the coupled problem

E(t) = ⇢
f

2
kuk2

L

2(⌦f (t)) +
⇢
s

2
k@

t

dk2
L

2(⌦̂s)
+

⇢
m

h

2
k@

t

⌘k2
L

2(�̂)
| {z }

kinetic energy

+µ
s

k✏(d)k2
L

2(⌦̂s)
+

�
s

2
kr · dk2

L

2(⌦̂s)
+

hE
m

2(1 + ⌫2
m

)
k✏

�

(⌘)k2
L

2(�̂)
+

hE
m

⌫
m

2(1� ⌫2
m

)
kr

�

· ⌘k2
L

2(�̂)
,

| {z }

elastic energy
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and D(t) denotes the dissipation

D(t) = µ
f

kD(v)k2
L

2(⌦f (t)).

The constant C that appears on the right-hand side of (25) depends only on the coe�cients in the
problem.

It was shown in [47] that the coupled fluid-multi-layered structure interaction problem, where
the thin structure was modeled by the linearly elastic Koiter shell model, has a weak solution which
satisfies an energy estimate corresponding to (25).

3. Discretization and monolithic solution algorithm

We present here a fully implicit scheme for the 3D fluid-multi-layered structure interaction
problem (24), for which all the nonlinearities in the problems are treated implicitly. This is in
contrast with the work presented in [9] where a fluid-multi-layered structure interaction problem
in 2D was solved using a partitioned scheme, called the kinematically-coupled �-scheme. Similar
approaches to the one presented here but applied to fluid-thick structure interaction problems can
be found in, e. g., [31, 54, 17, 4, 6, 14, 5, 57].

We approximate the time derivatives of both the fluid and structure problems by means of
second order Backward Di↵erentation Formulas (BDF2). In space, we consider a Galerkin finite
element approximation using P2–P1 Lagrange polynomials for the fluid velocity and pressure vari-
ables u and p respectively, and P2 for both the structure and fluid mesh displacement d

s

and d
f

,
respectively. Conforming meshes are considered at the fluid-structure interface.

After spatial and time discretizations, at each time step the resulting nonlinear fully-coupled
system can be rewritten as:

0

B

B

@

F (un+1, pn+1,dn+1
f

) + 0 + IT�f

�n+1 + 0

0 + S(dn+1
s

) � IT�s

�n+1 + 0
I�fun+1 � I�s/�tdn+1

s

+ 0 + 0
0 � I�sdn+1

s

+ 0 + G(dn+1
f

)

1

C

C

A

=

0

B

B

@

b
f

b
s

�I�s/�tdn

s

0

1

C

C

A

.

(26)
In (26) �n+1 is a vector of Lagrange multipliers used to enforce the continuity of the velocities at
the fluid-structure interface. On the left hand side of (26), the diagonal blocks F , S and G account
for the fully-discretized fluid, multi-layered structure (sum of thick and thin layers), and geometry
problems, respectively. We remark that F is nonlinear due to the convective term and the fact
that the computational fluid domain moves. The matrices I�f and I�s are the restriction of the
fluid and structure vectors to the interface �, and are used to enforce strongly the continuity of the
velocities at the fluid-structure interface, and the geometry adherence. Their transposes account
for the continuity of the normal stresses, which is imposed in weak form.

We solve the monolithic nonlinear problem (26) by using the Newton’s method. At each
time step, the generic k + 1 iteration of the Newton’s algorithm applied to (26) reads: start-
ing from an approximation of Xn+1

k

= (un+1
k

, pn+1
k

,dn+1
s,k

,�n+1
k

,dn+1
f,k

)T , we compute the residual

Rn+1
k

= (rn+1
F,k

, rn+1
S,k

, rn+1
C,k

, rn+1
G,k

)T :

Rn+1
k

=
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@

b
f

b
s

�I�s/�tdn

s,k

0
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A

�
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@

F (un+1
k

, pn+1
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f,k

) + IT�f

�n+1
k

S(dn+1
s,k

)� IT�s

�n+1
k

I�fun+1
k

� I�s/�tdn+1
s,k

�I�sdn+1
s,k

+G(dn+1
f,k

)

1

C
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. (27)
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Then, we compute the Newton correction vector �Xn+1
k

= (�un+1
k

, �pn+1
k

, �dn+1
s,k

, ��n+1
k

, �dn+1
f,k

)T

by solving the Jacobian linear system

J
FSG

�Xn+1
k

= �Rn+1
k

, (28)

where J
FSG

is the exact FSI Jacobian matrix [12]. Finally, we update the solution, i.e.

Xn+1
k+1 = Xn+1

k

+ �Xn+1
k

.

We stop the Newton iterations when kRn+1
k

k1/kRn+1
0 k1  ✏, where kRn+1

0 k1 is the discrete
L1-norm of the residual at the first Newton iteration and ✏ is a given tolerance. Linear system
(28) is solved using the GMRES method preconditioned by FaCSI [16].

4. Numerical results

4.1. Pressure wave propagation through a straight flexible cylinder

Our goal in this first test is to understand the impact of the thin layer thickness on the solution
of the coupled problem. This is interesting for several reasons. It was shown in [47] and in [9] that
as the thickness of the thin layer approaches zero, the solution of the fluid-thin-thick structure
interaction problem converges to the solution of the FSI problem with only one thick structure.
This was first shown in [47] analytically on a simplified, linear problem where the fluid-structure
coupling was considered to happen across a fixed fluid-structure interface. It was then shown
numerically in [9] that this was true for a fully nonlinear FSI problem set in 2D. Moreover, it was
shown that the presence of a thin structure with mass at the fluid-structure interface smooths-
out the solution of the FSI problem with multi-layered structures. This “regularizing” property
was not due to the viscosity induced dissipation (since both structures were strictly elastic), but
due to inertia of the thin fluid-structure interface with mass. This finding has many important
practical implications, including the understanding of the pressure wave propagation in arterial
walls, which are composed of several di↵erent layers, with a thin elastic layer (elastic lamina)
covered with endothelial cells that are in direct contact with blood flow. This thin elastic lamina
covered with endothelial cells plays the role of the thin elastic structure with mass, located at the
fluid-multi-layered structure interface, studied in the present paper. Thus, we consider a test case
which consists of simulating the propagation of a pressure wave in a fluid-filled straight elastic
pipe, and study the behavior of its solution as the thickness of the thin structure converges to zero.

For this purpose, we consider the fluid domain to be a cylinder of radius R
in

= 0.5 cm, length
L = 5 cm, with an elastic lateral boundary consisting of two layers: thin and thick, where the thin
layer is in direct contact with fluid flow and serves as a fluid-structure interface with mass. Let h be
the thickness of the thin layer andH the thickness of the thick layer. With the monolithic algorithm
presented in Section 3, we solve a sequence of FSI problems in 3D where h decreases while the
total thickness of the composite structure is kept constant, i.e. such that h +H = h

tot

= 0.1 cm.
We consider h equal to 80%, 60%, 40%, 20%, 10%, 5% and 0% of the total thickness h

tot

and set
H accordingly, i.e. H = h

tot

� h. The results obtained using a single (thick) layer model for the
structure correspond to the case h = 0 cm. The coupled fluid-structure system is initially at rest.
At the fluid domain inlet we apply a constant normal stress � · nf

in

= 1.33 ⇥ 104 dyne/cm2 for a
given time interval t 2 (0, 0.003) s, and then set the normal stress equal to zero. At the fluid domain
outlet and at the outer structure wall, a stress-free boundary condition is imposed. Homogeneous
Dirichlet boundary conditions, i.e., zero displacement, are enforced at both ends of the vessel wall.
All physical parameters for the fluid and composite structure used in the simulations are given in
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Table 1. Notice that since we are interested in understanding the behavior of the solution as the
thin layer thickness tends to zero (i.e. as the two-layer model tends to the single layer model), in
this preliminary example we considered the same density, Poisson ratio and Young modulus for
both the thin and thick layers.

Parameter Value Parameter Value

Fluid Fluid density, ⇢
f

1 g/cm3 Dynamic viscosity, µ
f

0.03 g/cm s

Thin wall Density, ⇢
m

1.2 g/cm3

Poisson ratio, ⌫
m

0.3 Young Modulus, E
m

3⇥ 106 dyne/cm2

Thick wall Density, ⇢
s

1.2 g/cm3

Poisson ratio, ⌫
s

0.3 Young Modulus, E
s

3⇥ 106 dyne/cm2

Table 1: Physical parameters used for the fluid and the double-layered structure.

The inlet boundary condition used initiates a pressure wave propagating through the fluid
domain, which is simulated over the time interval [0, 0.01] s using the time step �t = 5⇥ 10�4 s.
We report in Table 2 the information associated with the fluid and structure meshes used for the
simulation while in Table 3 we show the corresponding numbers of Degrees of Freedom (DoF).

Number of vertices Number of elements

Fluid mesh 14784 78390

Structure mesh 8712 34320

Table 2: Details of the fluid and structure meshes used for Example 4.1.

Fluid Dof Structure DoF Coupling DoF Geometry DoF Total

348441 172920 34056 333657 889074

Table 3: Number of degrees of freedom for the simulation of the pressure wave propagation in a flexible straight

cylinder. The number of fluid DoF is the sum of the velocity and the pressure DoF.

In Figure 2 we show the radial component of displacement of the fluid structure interface for
di↵erent values of h at times t = 0.002, 0.004, 0.006, 0.008 s. We notice that as the thin structure
thickness h tends to 0, the solution of the fluid-multi layered structure interaction problem con-
verges to the solution of the fluid-thick structure interaction problem, which corresponds to the
solution with the largest amplitude.

We observe that the thin layer has a smoothing e↵ect on the interface displacement. In fact, the
larger the value of h, the smaller the value of the (positive and negative) peak radial displacements,
and the milder the gradient of the radial displacement along the z-coordinate. Such regularizing
e↵ect of the thin layer inertia is also visible from Figure 3, where we report a visualization of the
structure displacement at time t = 0.008 s for di↵erent values of h.

From Figures 2 and 3 we also see that the larger the value of h, the faster the pressure wave
propagates in the fluid domain.

We observed that the presence of the thin layer does not cause an increase in the average
number of Newton iterations per time step. In our simulations the number of Newton iterations
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(a) Time = 0.002 s.
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(b) Time = 0.004 s.
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(c) Time = 0.006 s.
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(d) Time = 0.008 s.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2 · 10�3

4 · 10�3

6 · 10�3

8 · 10�3

1 · 10�2

1.2 · 10�2

1.4 · 10�2

1.6 · 10�2

Z coordinate [cm]

D
i
s
p
l
a
c
e
m
e
n
t
m
a
g
n
i
t
u
d
e
[
c
m
]

h=0% of h

tot

h=1% of h

tot

h=5% of h

tot

h=10% of h

tot

h=20% of h

tot

h=40% of h

tot

h=60% of h

tot

h=80% of h

tot

Figure 2: Radial component of interface displacement for di↵erent values of the thin structure thickness h at times:

(a) t = 0.002 s, (b) t = 0.004 s, (c) t = 0.06 s, (d) t = 0.08 s. The legend is reported at the bottom of the figure.
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h = 0%h
tot

h = 20%h
tot

h = 40%h
tot

h = 60%h
tot

h = 80%h
tot

Figure 3: Displacement of the solid visualized on a longitudinal clip of the domain at time t = 0.008 s for di↵erent

values of h. The deformation is magnified by a factor 15 for visualization purposes.

was equal to 3, regardless of the value of h. Similarly, we observed that the average number of
GMRES iterations to solve the linear system (28) is independent of h. In our simulations the
number was roughly equal to 28.

4.2. Diseased artery

We consider an artery a↵ected by the presence of atheroma, an accumulation of fatty material in
the tunica intima of the arterial walls, typically associated with atherosclerosis. The degenerative
accumulated material of atheroma protrudes into the lumen, narrowing it. This is known as a
stenotic lesion. The location of atheroma is always in the tunica intima, between the endothelium
lining and the smooth muscle tunica media of the arterial wall. See Figure 4.

Endothelium

Artery

Tunica intima

Tunica media

Tunica adventitia

Atheroma

Fibrous cap

Figure 4: Schematic representation of an atheroma.

Our composite structure model is particularly suited to simulate the behavior of such composite
structures. The thin layer of the tunica intima (with the fibrous cap) that is in direct contact with
blood flow is modeled by the thin elastic structure layer (elastic membrane) in our multi-layered
structure model. The rest of the arterial wall is modeled by the equations of 3D elasticity, where
the presence of atheroma is captured by the change in the elasticity parameters, which are chosen
to be “sti↵er” (higher Young’s modulus) in the atheroma region (see Cases 2 and 4 below). Table 4
shows the parameter values for the simulation. The computational geometry of the vessel lumen

13



Parameter Value Parameter Value

Fluid Fluid density, ⇢
f

1.055 g/cm3 Dynamic viscosity, µ
f

0.04 g/(cm s)

Thin wall Density, ⇢
m

1.055 g/cm3

Poisson ratio, ⌫
m

0.4 Young Modulus, E
m

4⇥ 106 dyne/cm2

Healty Density, ⇢
s

1.055 g/cm3

thick wall Poisson ratio, ⌫
s

0.4 Young Modulus, E
s

4⇥ 106 dyne/cm2

Atheroma Density, ⇢a 1.055 g/cm3

Poisson ratio, ⌫a 0.4 Young Modulus, Ea 5.02⇥ 106 dyne/cm2

Table 4: Physical parameters used for the simulation of the diseased artery.

(a) Computational geometry (b) Fluid domain

Figure 5: (a) Computational domain for the diseased artery: the fluid domain is in blue and the structure domain

is in gray. (b) Fluid domain with a red curve showing where on the fluid-structure interface the displacement was

postprocessed. In subfigure (b) the orientation of the axes is also reported. The direction of the flow is aligned with

the z-axis.

(the area occupied by blood), showing the protrusion of the atheroma, is shown in Figure 5 (a).
The blue region is the vessel lumen, while the arterial wall, modeled by as a composite thin-thick
structure, is shown in grey. The radius of the artery away from the atheroma is R = 0.18 cm. The
thick layer of the vessel wall has thickness H = 0.07 cm where it is healthy, while in the atheroma
region the thickness is increased up to the value of 0.188 cm, giving rise to around 60% stenosis.
The computational domain is 6 cm long.

We are interested in studying how the numerical results obtained using our two-layered structure
model compare with the results obtained using a single-layered structure model (thick structure
only). We are also interested in exploring how the flow and displacement are a↵ected by the change
in the structure parameters by comparing solutions obtained with uniform structure parameters
versus solutions obtained with varying structure parameters in the atheroma region.

We consider four cases:

1. Fluid interacting only with one thick layer with uniform Young’s modulus E
s

.
2. Fluid interacting only with one thick layer with variable Young’s modulus: E

s

in the healthy
region, E

a

in the atheroma region.
3. Fluid interacting with a two-layered structure with the thick layer as in case 1 and a thin

layer with Young’s modulus E
m

.
4. Fluid interacting with a two-layered structure with the thick layer as in case 2 and a thin

layer with Young’s modulus E
m

.
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The parameters values E
s

, E
a

, and E
m

are given in Table 4. The thickness of the thin layer in
cases 3 and 4 is set to h = 0.01 cm.

We impose non-homogeneous Neumann conditions (normal stress) at the inflow and outflow
boundaries, using physiologic pressures taken from measurements by Marques et al. [40]. See Fig-
ure 6. These measurements refer to the trans-stenotic pressure gradient in coronary arteries (left
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Figure 6: Inflow and outflow pressures used in our simulations.

anterior descending (LAD)). The length of the stenotic region was not provided in [40]. As in the
previous subsection, homogeneous Dirichlet boundary conditions are enforced at both ends of the
vessel wall (clamped structure) and a homogeneous Neumann condition is chosen for the outer
structure surface (zero external normal stress). The simulations are started from fluid at rest and
a couple of cycles are run before post-processing the results in order to be sure that time periodic
flow is established. In Table 5 we report the number of vertices and elements of the fluid and

Number of vertices Number of elements

Fluid mesh 70167 330909

Structure mesh 86298 374752

Table 5: Details of the fluid and structure meshes used for the diseased artery simulation.

structure meshes used in the simulations. We used P2–P1 finite elements for the fluid velocity and
pressure variables, P2 for the structure displacement and P2 for the ALE. In Table 6 we report the
number of Degrees of Freedom (DoF) associated to the fluid and structure meshes used.

We remark that even though the pressure data we used in our simulations is physiologic, one
should not expect that our simulations provide physiologic flow velocities or displacements in a
stenosed LAD corresponding to the studies reported in [40]. Not enough data was provided in [40]
to recreate the corresponding numerical simulations. Hence, this example was designed to illustrate,
under the physiologic pressure wave forms, what is the influence of di↵erent structure models and
structure coe�cients on the solutions of the underlying FSI problem.

We investigate the behavior of velocity, of the fluid-structure interface displacement, and of
the 3D thick structure displacement throughout the entire structure, under the flow conditions
described above, and for the four cases of structure models described above.
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Fluid Dof Structure DoF Coupling DoF Geometry DoF Total

1829079 1781235 329352 1498170 5437836

Table 6: Number of degrees of freedom for the diseased artery simulation. The number of fluid DoF is the sum of

the velocity and the pressure DoF.
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(b) t = 0.3 s
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(c) t = 0.7 s

Figure 7: Radial component of the fluid-structure interface displacement along the red line in Figure 5(b) for cases

1 (only thick, uniform E), 2 (only thick, variable E), 3 (double layer, uniform E), and 4 (double layer, variable E)

at times: (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.7 s.
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(b) t = 0.3 s
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(c) t = 0.7 s

Figure 8: Radial component of the fluid-structure interface velocity along the red line in Figure 5(b) for cases 1

(only thick, uniform E), 2 (only thick, variable E), 3 (double layer, uniform E), and 4 (double layer, variable E) at

times: (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.5 s, (d) t = 0.7 s.
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Figures 7 and 8 show the radial component of the fluid-structure interface displacement and
radial velocity of the interface along the cut of the computational domain shown in red line in
Figure 5(b). The four structure models listed under 1, 2, 3, and 4 above, are depicted in four
di↵erent color lines. Three di↵erent snap-shots during one cardiac cycle are shown in both figures.
In Figure 7 we observe that the atheroma region displaces much less than the surrounding tissue,
as expected. In particular, at time t = 0.1 s, at the beginning of the cardiac cycle when the pressure
gradient between the inlet and outlet is negative, the healthy part of the structure is pulled into
the lumen, while at t = 0.3 s, which corresponds to the systolic peak, the healthy portion of the
artery is inflated relative to the atheroma region, with high displacement gradients, especially near
the proximal site of the atheroma. See Figure 7 (b). When comparing the four di↵erent models,
shown in di↵erent color lines in Figure 7, we see that the largest displacements occur when only
one thick structure is used to model the arterial wall, corresponding to the blue and green lines
in all the figures, indicating 20% larger maximal displacement in Figure 7 (b). This is consistent
with the findings presented in the first example, see Section 4.1. Lower amplitude of displacement
in models with two structural layers is attributed to the smoothing e↵ects of the fluid-structure
interface inertia.

(a) t = 0.1 s (b) t = 0.3 s

Figure 9: Case 4 (double layer, variable E): Radial, azimuthal, and axial components of the fluid-structure interface

displacement along the red line in Figure 5(b) at time (a) t = 0.1 s and (b) t = 0.3 s.

The smoothing e↵ect of the double-layered structure is even more evident in the radial velocity
plots in Figure 8. We see, among other things, a significantly smaller radial velocity for the double-
layer model due to the fluid-structure interface inertia. Figure 8 (b) also shows a significantly smaller
interface radial velocity for the thick structure model with variable Young’s modulus reflecting
the presence of atheroma in the thick structure model. This shows that the choice of a particular
structure model to simulate the behavior of FSI solutions in hemodynamics, significantly influences
the solution itself. We believe that multi-layered structure models more closely approximate the
true composite, multi-layered structure of arterial walls, and should be preferred in hemodynamics
simulations over single structure models. For the two-layered structure model with variable Young’s
modulus, i.e., case 4, we further investigated the behavior of the radial, azimuthal, and axial
components of displacement. In Figure 9 we report the three components of the fluid-structure
interface displacement at the beginning of the cardiac cycle, i.e., at t = 0.1 s, and at the systolic
peak, i.e., at t = 0.3 s. We see that the radial and longitudinal displacements are of the same order
of magnitude, while the azimuthal component of displacement is much smaller. We also see that at

17



SYSTOLE:

DIASTOLE:

Figure 10: Case 4 (double layer, variable E): clip of the structure along the red line in Figure 5(b) colored with

the displacement magnitude and showing the structure deformation magnified by a factor 50 at time (a) t = 0.25
s (systole) and (b) t = 0.75 s (diastole). This figure shows how our model captures displacement throughout

the thickness of the entire structure. Large displacement during systole is observed at the site proximal to the

atheroma region, while during diastole, larger displacement is observed downstream from the atheroma region. The

displacement of the atheroma region is very low throughout the entire cardiac cycle. Large strains can be expected

at the proximal and distal ends of the atheroma, indicated by the large color gradients in the figure.

the systolic peak, the axial component of displacement drops significantly through the atheroma
region.

Finally, we report in Figure 10 the 3D structure displacement magnitude for the case of a double-
layered structure with variable Young’s modulus (case 4) on the clip of the structure domain along
the red line in Figure 5(b) at two di↵erent times: one corresponding to the systolic peak, and
one to mid diastole. The structure deformation in Figure 10 is magnified by a factor 50. We see
significant change in displacement in the atheroma region where displacement magnitude is small,
with high displacement gradients in the healthy tissue adjacent to the atheroma region, and higher
displacement magnitude, especially during systole, in the healthy tissue away from the atheroma.
The high displacement gradients, shown in Figure 10 (a) by the change in the color of displacement
magnitude, indicate high intramural strains. High intramural strains have been recently indicated as
a risk factor of early-stage atherosclerosis in carotid arteries [58]. We have shown with this example
that our simulations may be used to give a deeper insight into the details of the distribution of
intramural strain that can be detected in vivo using non-invasive, ultrasound B-mode sequences,
and eventually be used as a predictive tool for an early detection of atherosclerosis [58].

In conclusion, our results indicate that while the di↵erences in structure displacements are not
drastic for the four di↵erent structure models, the di↵erence in the radial component of interface
velocity between the four di↵erent cases is significant, indicating the smoothing properties of inertia
of the thin fluid-structure interface with mass. Furthermore, our results show that the magnitude
of longitudinal displacement of the fluid-structure interface, although smaller, is still comparable
to the magnitude of radial displacement, which contrasts the assumptions typically used in the
derivation of 1D reduced FSI models from the equations of linear elasticity [10]. Finally, we showed
that the composite structure model discussed in this paper enables clear identification of distri-
bution of 3D structure displacement and displacement gradients, indicating the regions within the
arterial wall where high strains in healthy artery occur due to the presence of atheroma, which
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may be a pre-cursor for a further growth of atherosclerotic lesions.

4.3. Diseased artery treated with a stent

We consider fluid-structure interaction between blood flow and a stenotic artery treated with
a stent. A stent is a metallic mesh-like tube which is used to prop the diseased arteries open. A
fully expanded stent ideally recovers the original vessel lumen, while it pushes the fatty deposits in
the atheroma region against the arterial walls. As a result, the stenotic artery treated with a stent
protrudes outwards to accommodate the presence of the atheroma in the arterial wall, while at the
same time keeping the diameter of the treated vessel within the normal range. Our computational
geometry of the arterial wall, simulating the situation described above, is shown in Figure 11.

(a) Asymmetric atheroma. (b) Atheroma treated with a stent.

Figure 11: Structure geometry with visualization of the plaque, shown in red in panel (a), and with an implanted

stent, shown in blue in panel (b).

The gray region in Figure 11 corresponds to the normal arterial tissue. The red region shows
the presence of the atheroma within the arterial wall, where the Youngs modulus of elasticity is
higher, and is given in Table 7. The stent, shown in blue color in Figure 11 (b), is located in the

Parameter Value Parameter Value

Fluid Fluid density, ⇢
f

1.055 g/cm3 Dynamic viscosity, µ
f

0.04 g/cm s

Thin wall Density, ⇢
m

1.055 g/cm3

Poisson ratio, ⌫
m

0.4 Young Modulus, E
m

4⇥ 106 dyne/cm2

Stent Density, ⇢st 8.5 g/cm3

Poisson ratio, ⌫st 0.31 Young Modulus, Est 2.43⇥ 1012 dyne/cm2

Healty Density, ⇢
s

1.055 g/cm3

thick wall Poisson ratio, ⌫
s

0.4 Young Modulus, E
s

4⇥ 106 dyne/cm2

Atheroma Density, ⇢a 1.055 g/cm3

Poisson ratio, ⌫a 0.4 Young Modulus, Ea 5.02⇥ 106 dyne/cm2

Table 7: Physical parameters used for simulation of the diseased artery with stent implanted.

thin structural layer, and is modeled by the significantly higher Youngs modulus where the stent
struts are located. We set the stent Young’s modulus to E

st

= 2.43⇥ 1011 Pa, which corresponds
to L-605 cobalt-chromium alloy. This is a commonly used material in stent manufacturing [53]. We
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assume that the stent struts are 0.12 mm thick [53] and set the thickness of the thin layer to 0.12
mm. All the other physical parameters for the simulation are reported in Table 7.

Number of vertices Number of elements

Fluid mesh 200515 1034917

Structure mesh 126635 524092

Table 8: Details of the fluid and structure meshes used.

Fluid Dof Structure DoF Coupling DoF Geometry DoF Total

4666354 2560404 204916 4465839 11897513

Table 9: Number of degrees of freedom for the simulation of the diseased artery treated with a stent. The number

of fluid DoF is the sum of the velocity and the pressure DoF.

Simulating slender stent struts using 3D approaches is computationally very expensive, typically
producing simulation results with poor accuracy due to the insu�cient mesh refinement imposed
by the large memory requirements associated with the use of 3D meshes to approximate the struts.
Since the stent struts’ thickness is small compared to the stent length, modeling stents by changing
the sti↵ness coe�cients in the thin structure model of thickness h, in places where the stent struts
are located, provides a computationally less expensive way of simulating stents. This manuscript
is the first work in which a stent is modeled this way, and is coupled to the elastodynamics of the
thick structure, i.e., the rest of the arterial wall, via the kinematic and dynamics coupling conditions
(17), (18), (19).

We impose the same boundary conditions as in Section 4.2. Again, the simulations are started
from fluid at rest and a couple of cycles are run before post-processing the results in order to be sure
that time periodic flow is established. In Table 8 we report the number of vertices and elements for
the fluid and structure meshes used in the simulations. In Table 9 we show the number of degrees of
freedom used in our numerical simulation. Figure 12 shows the structure displacement magnitude
at the systolic peak (t = 0.3 s) and at diastole (t = 0.7 s). The structure deformation is magnified
by a factor 50. The flow direction in Fig. 12 is from right to left. At both times and both on the
inner and outer structure surfaces, the displacement magnitude clearly reveals the presence of the
stent. In fact, the structure displacement is smaller where the stent is located, as expected given
the high sti↵ness of the stent material (see Table 7). One can observe in Fig. 12 (b) and (d) that
the displacement magnitude decreases within the arterial wall in the radial direction, starting from
the luminal region and going toward the outer wall. In fact, Figure 13 clearly shows high gradients
in magnitude of displacement surrounding the stent struts at three di↵erent arterial cross-sections
(proximal, central, and distal). This indicates high intramural strains in the area where the stent is
located, which may be responsible for an onset of a cascade of events leading to in-stent restenosis
[1, 41].

We further investigated the longitudinal (axial) displacement throughout the arterial wall to
see how the presence of a stent influences the longitudinal displacement. Figure 14 reports the
axial component of the structure displacement on a clip of the structure domain at systole (t = 0.3
s) and at diastole ( t = 0.75 s). The structure deformation is magnified by a factor of 50. The cool
color shades (green-cyan-blue-purple) denote compression, while the warm color shades (yellow-
orange-red) denote stretching.
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SYSTOLE:

DIASTOLE:

Figure 12: Displacement magnitude at t = 0.3 s (systole) and t = 0.7 s (diasole). The exterior (left) and interior

(right) views of the structure displacement are shown. The structure deformation is magnified by a factor of 50. The

direction of flow is from right to left.

(a) proximal, t = 0.3 s (b) central, t = 0.3 s (c) distal, t = 0.3 s

Figure 13: Stented artery: displacement magnitude at the proximal cross section, central cross section, and distal

cross section at the systolic peak t = 0.3 s (first row). The structure deformation is magnified by a factor 50.

21



Figure 14: Axial component of the structure displacement viewed from the interior of fluid domain at time (a)

t = 0.25 s, (b) t = 0.3 s, and (c) t = 0.75 s. The structure deformation is magnified by a factor 50. The direction of

flow is oriented like the z-axis.
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We first notice that the axial component of displacement is non-negligible, as was the case with
only atheroma, studied in Section 4.2. In fact, the maximum axial displacement in absolute value
is 0.0002 cm, while the maximum overall magnitude of displacement is 0.0008 cm (see Fig. 12).
More importantly, Figure 14 shows that large longitudinal displacements occur at the proximal and
distal ends of the stent, and at the inlet (in systole) and outlet of the tube (in diastole). The large
displacements near the inlet and outlet of the tube are the artifacts of the homogeneous boundary
conditions on the structure displacement (fixed ends) and are not physiological. However, the large
displacements and displacement gradients near the proximal and distal ends of the stent are likely
physiologically relevant. In particular, we see that in systole, the healthy tissue near the proximal
end of the stent in significantly compressed in the longitudinal direction toward the stent, due to
the presence of the rigid stent, which is obstructing the tissue movement, while in diastole, the
healthy tissue near the distal end of the stent is significantly stretched in the direction of flow.
One can observe particularly large displacement gradients near both ends of the prosthesis, which
may, as mentioned earlier, be a pre-cursor for development of neo-intimal hyperplasia due to the
chronic tissue damage.

(a) t = 0.3 s, front (b) t = 0.3 s, side (c) t = 0.35 s, front (d) t = 0.35 s, side

Figure 15: Axial component of structure displacement at the proximal cross section at time t = 0.3 s (a) front view

and (b) side view, and t = 0.35 s (c) front view and (d) side view. The structure deformation is magnified by a

factor 50.

We conclude this section by showing how axial displacement varies intramurally, i.e., throughout
the structure thickness. Figure 15 shows the axial displacement at the proximal end of the stent
just before the maximum axial displacement in systole (t = 0.3 s), and at the maximum axial
displacement (t = 0.35 s). Two views are shown: the frontal view and the side view.

The figure shows that at t = 0.3 s, the stent struts undergo no axial displacement, while the
tissue in-between the struts and throughout the thick wall, stretch in the direction of flow, showing
a “skirt” pattern along the lumen circumference, i.e., at the fluid-structure interface. At t = 0.35 s
the stent struts start ”catching up”, producing non-zero axial displacement following the motion of
the fluid. The stent strut displacement is, however, still smaller than that of the surrounding tissue,
producing again a skirt pattern in the azymuthal direction within the stent. Figure 15 clearly shows
high intramural axial displacement gradients, contributing to the events associated with in-stent
restenosis.

This example shows the feasibility of our model to provide various novel pieces of information
that can be used to study the interaction between blood flow and fully expanded stents implanted
within stenotic lesions.
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5. Conclusions

This work presents a first monolithic computational fluid-composite structure interaction model
designed to capture the interaction between blood flow and a diseased multi-layered arterial wall
treated with a vascular prostheses called a stent. The model can capture the presence of atheroma,
a fatty material that forms plaque in arteries, the multi-layered structure of arterial walls, and
the presence of a vascular prosthesis, called a stent. The arterial wall is modeled as a two-layered
structure, while the atheroma is modeled by the change in the elasticity coe�cients in the thick
structure layer. The stent is modeled by the change in the elasticity coe�cients in the thin struc-
ture layer in places where the stent struts are located, forming a mesh-like pattern following the
geometric distribution of struts in a particular stent. The two structural layers are coupled via the
no-slip condition, and balance of forces, which models “glued” structures. In particular, the stent is
glued to the atheroma region. Di↵erent coupling conditions may be used to capture di↵erent phys-
ical/physiological phenomena, including stent migration, or slip between the stent and atheroma,
which has been associated with under-expanded stents.

Three examples were considered, each showing a new feature of the fluid-structure interaction
model with composite structures, presented in this manuscript. The first example considers FSI
between fluid flow and a two-layered cylindrical structure, showing the smoothing e↵ects of the
thin fluid-structure interface with mass. The second example considers FSI between fluid flow
(blood flow) and a multi-layered structure (arterial wall) with a thick structure of varying sti↵ness
and thickness (atheroma). The results show high intramural strains during cardiac cycle due to
the presence of atheroma in the arterial wall. The third example considers FSI between fluid flow
(blood) and a multi-layered structure (arterial wall), with a thick structure of varying sti↵ness and
thickness to model atheroma, and a thin structure of varying sti↵ness to model a fully expanded
vascular stent anchored to the arterial wall. Various novel pieces of information can be deduced
from the simulations based on investigating intramural displacement and strain distribution for
both the radial and longitudinal displacements. Since the particular geometry of stent struts is
well-captured, this model provides an indispensable tool to study the influence of di↵erent stent
geometries on arterial intramural stress and strain distribution as well as flow patterns, all of which
have been associated with an onset of a cascade of events leading to potential pathogeneses within
the arterial wall. The model presented in this manuscript can be easily extended to more than two
structural layers to capture a more realistic multi-layered structure of arterial walls.
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