Department of Mathematics

Summer 2021

(Disclaimer: Be advised that some information on this page may not be current due to course scheduling changes.
Please view either the UH Class Schedule page or your Class schedule in myUH for the most current/updated information.)

Mini Session: (5/17-6/05) , Session \#1: (6/07-8/13) , Session \#2: (6/07-7/08) , Session \#3: (6/077/27) , Session \#4: (7/12-8/11)

GRADUATE COURSES - SUMMER 2021

SENIOR UNDERGRADUATE COURSES

This schedule is subject to changes. Please contact the Course Instructor for confirmation

Course	Section	Course Title \& Session	Course Day \& Time	Rm \#	Instructor
Math 4364	16025	Intro. to Scientific Computing (Session \#3)	Online	Online	T. Pan
Math 4377 / Math 6308	10482	Advanced Linear Algebra I (Session \#2)	MTWThF, 2-4PM	Online	M. Kalantar
Math 4378 / Math 6309	11498	Advanced Linear Algebra II (Session \#4)	MTWThF, 10AM Noon	Online	A. Haynes
Math 4389	14828	Survey of Undergraduate Math (Session \#2)	MTWThF, 10AM- Noon	Online	D. Blecher

GRADUATE ONLINE COURSES

Course	Section	Course Title	Course Day \& Time	Instructor
Math 5310	14822	History of Mathematics (Session \#1)	(online)	S. Ji
Math 5341	15228	Mathematical Modeling (Session \#2)	(online)	J. He
Math 5383	18222	Number Theory (Session \#2)	(online)	M. Ru
Math 5389	13307	Survey of Mathematics (Session \#2)	(online)	G. Etgen

GRADUATE COURSES

Course	Section	Course Title	Course Day \& Time	Rm \#	Instructor
Math 6308	16183	Advanced Linear Algebra I (Session \#2)	MTWThF, 2-4PM	(online)	M. Kalantar
Math 6309	16184	Advanced Linear Algebra II (Session \#4)	MTWThF, 10AM—Noon	(online)	A. Haynes
Math 6386	15688	Big Data Analytics (Session \#3)	Fr, 3-5PM	(online)	D. Shastri

Course Details

SENIOR UNDERGRADUATE COURSES

Math 4364 (16025) - Intro. to Scientific Computing

Prerequisites:
Text(s):

Description: MATH 3331 or MATH 3321
Numerical Analysis (9th edition), by R.L. Burden and J.D. Faires, Brooks-Cole Publishers. ISBN: 978-0538733519 Root finding, interpolation and approximation, numerical differentiation and integration, numerical linear algebra, numerical methods for differential equations

Math 4377 (10482)- Advanced Linear Algebra I
MATH 2331 and MATH 3325, and three additional hours of 3000-4000 level Mathematics.
Linear Algebra, 5th Edition by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence. ISBN: 9780134860244
Syllabus: Chapter 1, Chapter 2, Chapter 3, Chapter 4 (4.1-4.4), Chapter 5 (5.1-5.2) (probably not covered)

Course Description: The general theory of Vector Spaces and Linear Transformations will be developed in an axiomatic fashion.
Description: Determinants will be covered to study eigenvalues, eigenvectors and diagonalization.
Grading: There will be three Tests and the Final. I will take the two highest test scores (60\%) and the mandatory final (40\%). Tests and the Final are based on homework problems and material covered in class.
<< back to top >>
Math 4378 (11498) - Advanced Linear Algebra II
Prerequisites: Math 4377 or Math 6308
Linear Algebra, 5th edition, by Friedberg, Insel, and Spence, ISBN: 9780134860244
The instructor will cover Sections 5-7 of the textbook. Topics include: Eigenvalues/Eigenvectors, Cayley-Hamilton Theorem, Inner Products
Description: and Norms, Adjoints of Linear Operators, Normal and Self-Adjoint Operators, Orthogonal and Unitary Operators, Jordan Canonical Form, Minimal Polynomials.

Prerequisites:
Text(s):
Description:

Math 4389 (14828) - Survey of Undergraduate Math
MATH 3330, MATH 3331, MATH 3333, and three hours of 4000-level Mathematics.
Instructors notes
A review of some of the most important topics in the undergraduate mathematics curriculum.

ONLINE GRADUATE COURSES

MATH 5310 (14822) - History of Mathematics
Prerequisites: Graduate standing
Text(s):
No textbook is required.

This course is designed to provide a college-level experience in history of mathematics. Students will understand some critical historical mathematics events, such as creation of classical Greek mathematics, and development of calculus; recognize notable mathematicians and the impact of their discoveries, such as Fermat, Descartes, Newton and Leibniz, Euler and Gauss; understand the development of certain mathematical topics, such as Pythagoras theorem, the real number theory and calculus.

Aims of the course: To help students
to understand the history of mathematics;
to attain an orientation in the history and philosophy of mathematics; to gain an appreciation for our ancestor's effort and great contribution;
to gain an appreciation for the current state of mathematics; to obtain inspiration for mathematical education, and to obtain inspiration for further development of mathematics.

Description:
On-line course is taught through Blackboard Learn, visit http://www.uh.edu/webct/ for information on obtaining ID and password.

The course will be based on my notes.
Homework and Essays assignement are posted in Blackboard Learn. There are four submissions for homework and essays and each of them covers 10 lecture notes. The dates of submission will be announced.

All homework and essays, handwriting or typed, should be turned into PDF files and be submitted through Blackboard Learn. Late homework is not acceptable.

There is one final exam in multiple choice.
Grading: 40% homework, 45% projects, 15% Final exam

Prerequisites:

Text(s):

Description:
Course Platforms: MS Teams and Blackboard.
Course Technology Requirements: Computer, internet, microphone and webcam.

Course Overview: The course is divided into two parts. Part I introduces vectors, matrices, and least squares methods, related topics on applied linear algebra that are behind modern data science and other applications, including document classification, prediction model from data, enhanced images, control, state estimation, and portfolio optimization. We will quickly review Part I. 1 Vectors and I. 2 Matrices in the first two weeks, and then focus on Part I. 3 Least Squares and more advanced examples and applications in the following two and half weeks. Part II aims to use Chebfun, an opensource MATLAB package, to explore ODEs and bring new perspectives and insights on topics that are ubiquitous in advanced applications, including heat conduction, chemical reactions, chaos, population dynamics, deformations of a beam, radioactivity, bifurcation theory, stability theory, infectious diseases, nerve signals, vibrations, dynamics of networks, ballistics, planetary dynamics.

Detailed Syllabus (PDF)

MATH 5383 (18222) - Number Theory
Prerequisites: Graduate standing.

Text(s):
TBA
Description: TBA

MATH 5389 (13307) - Survey of Mathematics
Prerequisites: Graduate standing
Text(s):

Description:
Instructor's notes
A review and consolidation of undergraduate courses in linear algebra, differential equations, analysis, probability, and astract algebra. Students may not receive credit for both MATH 4389 and MATH 5389.

GRADUATE COURSES

MATH 6308 (16183) - Advanced Linear Algebra I
Prerequisites:
Text(s):
Graduate standing. MATH 2331 and MATH 3325, and three additional hours of 3000-4000 level Mathematics.
Linear Algebra, 5th Edition by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence. ISBN: 9780134860244

Syllabus: Chapter 1, Chapter 2, Chapter 3, Chapter 4 (4.1-4.4), Chapter 5 (5.1-5.2) (probably not covered)

Course Description: The general theory of Vector Spaces and Linear Transformations will be developed in an axiomatic fashion.
Description: Determinants will be covered to study eigenvalues, eigenvectors and diagonalization.
Grading: There will be three Tests and the Final. I will take the two highest test scores (60%) and the mandatory final (40%). Tests and the Final are based on homework problems and material covered in class.

MATH 6309 (16184) - Advanced Linear Algebra II
Prerequisites: Graduate standing. Math 4377 or Math 6308

Text(s):
Linear Algebra, 5th edition, by Friedberg, Insel, and Spence, ISBN: 9780134860244

The instructor will cover Sections 5-7 of the textbook. Topics include: Eigenvalues/Eigenvectors, Cayley-Hamilton Theorem, Inner Products
Description: and Norms, Adjoints of Linear Operators, Normal and Self-Adjoint Operators, Orthogonal and Unitary Operators, Jordan Canonical Form, Minimal Polynomials.
<< back to top >>
MATH 6386 (15688) - Big Data Analytics
Graduate standing. Students must be in the Statistics and Data
Prerequisites:
Text(s):
Description:

Science, MS program
TBA

TBA

