Department of Mathematics

Summer 2015

GRADUATE COURSE SUMMER 2015

SENIOR UNDERGRADUATE COURSES

Course	Section	Course Title & Session	Course Day & Time	Rm #	Instructor
Math 4377	11967	Advanced Linear Algebra I	MoTuWeThFr	SEC 2021	K. Kaiser
		(06/01/2015 - 07/07/2015)	10:00AM - 12:00PM		
Math 4378	13482	Advanced Linear Algebra II	MoTuWeThFr	SEC 202A	A. Torok
		(07/08/2015 - 08/13/2015)	10:00AM - 12:00PM		
Math 4389	18715	Survey of Undergraduate Mathematics	Arrange (online course)	Online	C. Peters
		(06/01/2015 - 07/22/2015)			

GRADUATE ONLINE COURSES

Course	Section	Course Title	Course Day & Time	Instructor
Math 5310	16157	History of Mathematics	Arrange (online course)	c li
		(07/08/2015 - 08/13/2015)	Arrange (online course)	5. JI
Math 5336	12537	Discrete Mathematics	Arrenze (enline equires)	K. Kaiser
		(06/01/2015 - 07/07/2015)	Analige (online course)	
Math 5378	19416	Axiomatic Geometry	Arrange (online course)	L. Hollyer
		(06/01/2015 - 08/14/2015)		
Math 5382	15806	Probability	Arrange (online course)	C. Peters
		(06/01/2015 - 07/22/2015)		
Math 5383	17302	Number Theory	Arrange (online course)	M Du
		(06/01/2015 - 07/07/2015)		IVI. RU
Math 5389	16451	Survey of Mathematics	Arrange (online course)	C Etgon
		(06/01/2015 - 07/07/2015)		G. Elgen

GRADUATE COURSES

Course	Section Course Title	Course Day & ⁻
--------	----------------------	---------------------------

Math 6397	10272	Scientific Code Development	MoTuWeThFr		1 Tarak
	18373	(07/08/2015 - 08/13/2015)	12:00PM - 2:00PM	АП 3047	A. TOTOK

-----Course Details-----

SENIOR UNDERGRADUATE COURSES

	Math 4377 - Advanced Linear Algebra I
Prerequisites:	
Text(s):	Linear Algebra, Fourth Edition by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence
	Syllabus: Chapter 1, Chapter 2, Chapter 3, Chapter 4 (4.1-4.4), Chapter 5 (5.1-5.2) (probably not covered)
	Course Description: The general theory of Vector Spaces and Linear Transformations will be developed in an axiomatic fashion.
Description:	Determinants will be covered to study eigenvalues, eigenvectors and diagonalization.
	Grading: There will be three Tests and the Final. I will take the two
	highest test scores (60%) and the mandatory final (40%). Tests and
	the Final are based on homework problems and material covered in class.
	<< back to top >>
	Math 4378 - Advanced Linear Algebra II
Prerequisites:	Math 4377 or Math 6308
Text(s):	Linear Algebra, 4th edition, by Friedberg, Insel, and Spence, ISBN 0- 13-008451-4
	The instructor will cover Sections 5-7 of the textbook. Topics include:
	Eigenvalues/Eigenvectors, Cayley-Hamilton Theorem, Inner Products
Description:	and Norms, Adjoints of Linear Operators, Normal and Self-Adjoint
	Operators, Orthogonal and Unitary Operators, Jordan Canonical Form, Minimal Polynomials.

ONLINE GRADUATE COURSES

	MATH 5310 - History of Mathematics
Prerequisites:	Graduate standing
Text(s):	No textbook is required.
	This course is designed to provide a college-level experience in history
	of mathematics. Students will understand some critical historical
	mathematics events, such as creation of classical Greek mathematics,
	and development of calculus; recognize notable mathematicians and
	the impact of their discoveries, such as Fermat, Descartes, Newton
	and Leibniz, Euler and Gauss; understand the development of certain
	mathematical topics, such as Pythagoras theorem, the real number
	theory and calculus.
	Aims of the course: To help students
	to understand the history of mathematics;
	to attain an orientation in the history and philosophy of mathematics;
	to gain an appreciation for our ancestor's effort and great
	contribution;
	to gain an appreciation for the current state of mathematics;
	to obtain inspiration for mathematical education,
	and to obtain inspiration for further development of mathematics.
Description:	On-line course is taught through Blackboard Learn, visit
	http://www.uh.edu/webct/ for information on obtaining ID and
	password.
	The course will be based on my notes.
	Homework and Essays assignement are posted in Blackboard Learn
	There are four submissions for homework and essays and each of
	them covers 10 lecture notes. The dates of submission will be
	announced.
	All nomework and essays, nandwriting or typed, should be turned
	homework is not acceptable.
	There is one final exam in multiple choice.
	Grading: 40% homework, 45% projects, 15 % Final exam

Prerequisites:	MATH 5336 - Discrete Mathematics Graduate standing Discrete Mathematics and Its Applications, Kenneth H. Rosen, seventh
Text(s):	edition, McGraw Hill, ISBN-13 978-0-07-288008-3, ISBN-10 0-07-288008-2. Instructor lecture note: Plus: on the Zermelo-Fraenkel Axioms and Equivalence of Sets.
	Syllabus: Chapter 1 (Logic and Proofs): 1.1, 1.3, 1.4 -1.6 ,Chapter 2 (Sets and Functions), Chapter 5 (Induction): 5.1-5.3, Chapter 9 (Relations)
Description:	The Zermelo Fraenkel Axioms; Equivalence of Sets in form of my notes.
	Grading: Midterm is worth 40%, the final is worth 40% and Homework is worth 20%.
	For turning in Homework, students need to get the software program Scientific Notebook.
	<pre>>> <> back to top >></pre>
MATH 5	Three semesters of calculus, or consent of instructor
r rerequisites.	"College Geometry: a Discovery Approach" by David C Kay
Text(s):	ISBN0-321-04624-2
	A review of the axiomatic approach to Euclidean Geometry and an
	introduction to non-Euclidean Geometries. Some finite geometries.

Description: Hyperbolic Geometry and Spherical Geometry are introduced. A student version of The Geometer's Sketchpad is required for the homework assignments.

<< back to top >>

MATH 5382 - Probability

Prerequisites:Text(s):Probability: With Applications and R | Edition: 1 by Robert P. Dobrow,
ISBN: 9781118241257

Description:

None

Text(s):	Instructor's lecture notes. The reference book will be "Beginning Number Theory" by Neville Robbins, second Edition.		
	Number theory is a subject that has interested people for thousand of		
	years. This course is a one-semester long graduate course on number		
	theory. Topics to be covered include divisibility and factorization,		
	linear Diophantine equations, congruences, applications of		
	congruences, solving linear congruences, primes of special forms, the		
Description:	Chinese Remainder Theorem, multiplicative orders, the Euler		
	function, primitive roots, quadratic congruences, representation		
	problems and continued fractions. There'll be no specific		
	prerequisites beyond basic algebra and some ability in reading and		
	writing mathematical proofs.		

<< back to top >>

MATH 5389 - Survey of Mathematics

Prerequisites:
Text(s):
Description:

GRADUATE COURSES

MATH 6397 -	Selected Topics in Mathematics: Scientific Code Development
Prerequisites:	familiarity with computers
Text(s):	material will be posted on-line
	The purpose of this course is to improve programming skills in order
	to tackle mathematical problems that require computations (e.g.,
	numerically solving ODE's, PDE's, SDE's). The emphasis is on
	converting an algorithm or theoretical result into a good code, and
D	presenting the results in a convenient format.
Description:	
	Students can use a language they are familiar with or, if needed, learn a new one. Some material will be posted on-line. After presenting the basic principles, students will work on projects. During the face-to- face meetings we will discuss and debug code.